SuperLectures.com

LOW-COMPLEXITY PREDICTIVE LOSSY COMPRESSION OF HYPERSPECTRAL AND ULTRASPECTRAL IMAGES

Full Paper at IEEE Xplore

Image Coding

Přednášející: Enrico Magli, Autoři: Andrea Abrardo, Mauro Barni, University of Siena, Italy; Enrico Magli, Politecnico di Torino, Italy

Lossy compression of hyperspectral and ultraspectral images is traditionally performed using 3D transform coding. This approach yields good performance, but its complexity and memory requirements are unsuitable for onboard compression. In this paper we propose a low-complexity lossy compression scheme based on prediction, uniform-threshold quantization, and rate-distortion optimization. Its performance is competitive with that of state-of-the-art 3D transform coding schemes, but the complexity is immensely lower. Moreover, the algorithm is able to limit the scope of errors and packet losses, and is amenable to parallel implementation, making it suitable for onboard compression at high throughputs.


  Přepis řeči

|

  Slajdy

Zvětšit slajd | Zobrazit všechny slajdy

0:00:16

  1. slajd

0:00:27

  2. slajd

0:00:43

  3. slajd

0:02:29

  4. slajd

0:04:44

  5. slajd

0:05:26

  6. slajd

0:06:40

  7. slajd

0:07:13

  8. slajd

0:08:01

  9. slajd

0:09:26

 10. slajd

0:10:42

 11. slajd

0:11:21

 12. slajd

0:13:17

 13. slajd

0:14:45

 14. slajd

0:15:27

 15. slajd

0:15:43

 16. slajd

0:16:14

 17. slajd

  Komentáře

Please sign in to post your comment!

  Informace o přednášce

Nahráno: 2011-05-24 10:55 - 11:15, Club A
Přidáno: 18. 6. 2011 04:01
Počet zhlédnutí: 22
Rozlišení videa: 1024x576 px, 512x288 px
Délka videa: 0:20:12
Audio stopa: MP3 [6.83 MB], 0:20:12