SuperLectures.com

A BASIS METHOD FOR ROBUST ESTIMATION OF CONSTRAINED MLLR

Adaptation for ASR

Full Paper at IEEE Xplore

Přednášející: Daniel Povey, Autoři: Daniel Povey, Kaisheng Yao, Microsoft Corporation, United States

Constrained Maximum Likelihood Linear Regression (CMLLR) is a widely used speaker adaptation technique in which an affine transform of the features is estimated for each speaker. However, when the amount of speech data available is very small (e.g. a few seconds), it can be difficult to get sufficiently accurate estimates of the transform parameters. In this paper we describe a method of estimating CMLLR robustly from less data. We do this by representing the CMLLR transform matrix as a weighted sum over basis matrices, where the basis is constructed in such a way that the most important variation is concentrated in the leading coefficients. Depending on the amount of data available, we can estimate a smaller or larger number of coefficients.


  Přepis řeči

|

  Slajdy

Zvětšit slajd | Zobrazit všechny slajdy

0:00:16

  1. slajd

0:00:52

  2. slajd

0:01:19

  3. slajd

0:02:08

  4. slajd

0:02:36

  5. slajd

0:03:36

  6. slajd

0:06:06

  7. slajd

0:07:45

  8. slajd

0:09:00

  9. slajd

0:10:45

 10. slajd

0:12:21

 11. slajd

0:15:40

 12. slajd

0:16:19

 13. slajd

  Komentáře

Please sign in to post your comment!

  Informace o přednášce

Nahráno: 2011-05-24 17:55 - 18:15, Panorama
Přidáno: 15. 6. 2011 15:13
Počet zhlédnutí: 45
Rozlišení videa: 1024x576 px, 512x288 px
Délka videa: 0:19:14
Audio stopa: MP3 [6.50 MB], 0:19:14