SuperLectures.com

LORENTZIAN BASED ITERATIVE HARD THRESHOLDING FOR COMPRESSED SENSING

Compressed Sensing: Theory and Methods

Full Paper at IEEE Xplore

Přednášející: Rafael Carrillo, Autoři: Rafael Carrillo, Kenneth Barner, University of Delaware, United States

In this paper we propose a robust iterative hard thresolding (IHT) algorithm for reconstructing sparse signals in the presence of impulsive noise. To address this problem, we use a Lorentzian cost function instead of the L2 cost function employed by the traditional IHT algorithm. The derived algorithm is comparable in computational load to the least squares based IHT. Analysis of the proposed method demonstrates its robustness under heavy-tailed models. Simulations show that the proposed algorithm significantly outperform commonly employed sparse reconstruction techniques in impulsive environments, while providing comparable reconstruction quality in less demanding, light-tailed environments.


  Přepis řeči

|

  Slajdy

Zvětšit slajd | Zobrazit všechny slajdy

0:00:34

  1. slajd

0:01:55

  2. slajd

0:02:13

  3. slajd

0:02:43

  4. slajd

0:03:33

  5. slajd

0:05:20

  6. slajd

0:07:41

  7. slajd

0:09:20

  8. slajd

0:10:09

  9. slajd

0:11:34

 10. slajd

0:12:17

 11. slajd

0:12:56

 12. slajd

0:13:16

 13. slajd

0:13:57

 14. slajd

0:15:30

     9. slajd

  Komentáře

Please sign in to post your comment!

  Informace o přednášce

Nahráno: 2011-05-25 14:25 - 14:45, Club B
Přidáno: 22. 6. 2011 05:08
Počet zhlédnutí: 64
Rozlišení videa: 1024x576 px, 512x288 px
Délka videa: 0:19:55
Audio stopa: MP3 [6.73 MB], 0:19:55