SuperLectures.com

LORENTZIAN BASED ITERATIVE HARD THRESHOLDING FOR COMPRESSED SENSING

Compressed Sensing: Theory and Methods

Full Paper at IEEE Xplore

Presented by: Rafael Carrillo, Author(s): Rafael Carrillo, Kenneth Barner, University of Delaware, United States

In this paper we propose a robust iterative hard thresolding (IHT) algorithm for reconstructing sparse signals in the presence of impulsive noise. To address this problem, we use a Lorentzian cost function instead of the L2 cost function employed by the traditional IHT algorithm. The derived algorithm is comparable in computational load to the least squares based IHT. Analysis of the proposed method demonstrates its robustness under heavy-tailed models. Simulations show that the proposed algorithm significantly outperform commonly employed sparse reconstruction techniques in impulsive environments, while providing comparable reconstruction quality in less demanding, light-tailed environments.


  Speech Transcript

|

  Slides

Enlarge the slide | Show all slides in a pop-up window

0:00:34

  1. slide

0:01:55

  2. slide

0:02:13

  3. slide

0:02:43

  4. slide

0:03:33

  5. slide

0:05:20

  6. slide

0:07:41

  7. slide

0:09:20

  8. slide

0:10:09

  9. slide

0:11:34

 10. slide

0:12:17

 11. slide

0:12:56

 12. slide

0:13:16

 13. slide

0:13:57

 14. slide

0:15:30

     9. slide

  Comments

Please sign in to post your comment!

  Lecture Information

Recorded: 2011-05-25 14:25 - 14:45, Club B
Added: 22. 6. 2011 05:08
Number of views: 64
Video resolution: 1024x576 px, 512x288 px
Video length: 0:19:55
Audio track: MP3 [6.73 MB], 0:19:55