SuperLectures.com

SPARSITY-UNDERSAMPLING TRADEOFF OF COMPRESSED SENSING IN THE COMPLEX DOMAIN

Full Paper at IEEE Xplore

Compressed Sensing: Theory and Methods

Přednášející: Zai Yang, Autoři: Zai Yang, Cishen Zhang, Nanyang Technological University, Singapore

In this paper, recently developed ONE-L1 algorithms for compressed sensing are applied to complex-valued signals and sampling matrices. The optimal and iterative solution of ONE-L1 algorithms enables empirical investigation and evaluation of the sparsity-undersampling tradeoff of $ell_1$ minimization of complex-valued signals. A remarkable finding is that, not only there exists a sharp phase transition for the complex case determining the behavior of the sparsity-undersampling tradeoff, but also this phase transition is different and superior to that for the real case, providing a significantly improved success phase in the transition plane.


  Přepis řeči

|

  Slajdy

Zvětšit slajd | Zobrazit všechny slajdy

0:00:16

  1. slajd

0:00:33

  2. slajd

0:00:51

  3. slajd

0:02:52

  4. slajd

0:04:52

  5. slajd

0:05:34

  6. slajd

0:07:33

  7. slajd

0:09:46

  8. slajd

0:10:55

  9. slajd

0:11:57

 10. slajd

0:13:23

 11. slajd

0:14:04

 12. slajd

  Komentáře

Please sign in to post your comment!

  Informace o přednášce

Nahráno: 2011-05-25 14:45 - 15:05, Club B
Přidáno: 22. 6. 2011 03:51
Počet zhlédnutí: 61
Rozlišení videa: 1024x576 px, 512x288 px
Délka videa: 0:15:34
Audio stopa: MP3 [5.24 MB], 0:15:34