SuperLectures.com

GENERALIZED RESTRICTED ISOMETRY PROPERTY FOR ALPHA-STABLE RANDOM PROJECTIONS

Compressed Sensing: Theory and Methods

Full Paper at IEEE Xplore

Přednášející: Gonzalo R. Arce, Autoři: Daniel Otero, Gonzalo R. Arce, University of Delaware, Colombia

The Restricted Isometry Property (RIP) is an important concept in compressed sensing. It is well known that many random matrices satisfy the RIP with high probability, whenever the entries of the random matrix have finite second order moment. Recent work in compressed sensing has shown that it is possible to do dimensionality reduction and signal reconstruction using Cauchy random projections. This suggests that the l1 distance is preserved when one projects a set of data points from a high-dimensional space, to one of lower dimension with a random matrix which does not have finite variance. This paper generalizes this concept where it is shown that α-stable projections, which preserve the lα distance, also satisfy a generalized RIP property and consequently reconstruction from α- stable projections is feasible.


  Přepis řeči

|

  Slajdy

Zvětšit slajd | Zobrazit všechny slajdy

0:00:16

  1. slajd

0:01:46

  2. slajd

0:02:34

  3. slajd

0:03:02

  4. slajd

0:06:01

  5. slajd

0:06:48

  6. slajd

0:07:57

  7. slajd

0:09:11

  8. slajd

0:09:29

  9. slajd

0:10:32

 10. slajd

0:11:18

 11. slajd

0:12:01

 12. slajd

0:12:34

 13. slajd

0:13:52

 14. slajd

0:14:16

 15. slajd

0:14:56

 16. slajd

0:15:13

 17. slajd

0:15:19

 18. slajd

0:15:41

 19. slajd

0:17:46

 20. slajd

0:18:04

 21. slajd

0:20:01

    19. slajd

  Komentáře

Please sign in to post your comment!

  Informace o přednášce

Nahráno: 2011-05-25 15:25 - 15:45, Club B
Přidáno: 22. 6. 2011 04:37
Počet zhlédnutí: 150
Rozlišení videa: 1024x576 px, 512x288 px
Délka videa: 0:23:36
Audio stopa: MP3 [8.00 MB], 0:23:36