SPATIALLY-CORRELATED SENSOR DISCRIMINANT ANALYSIS
Classification and Pattern Recognition
Presented by: Kush Varshney, Author(s): Kush Varshney, IBM T.J. Watson Research Center, United States
A study of generalization error in signal detection by multiple spatially-distributed and -correlated sensors is provided when the detection rule is learned from a finite number of training samples via the classical linear discriminant analysis formulation. Spatial correlation among sensors is modeled by a Gauss--Markov random field defined on a nearest neighbor graph according to inter-sensor spatial distance, where sensors are placed randomly on a growing bounded region of the plane. A fairly simple approximate expression for generalization error is derived involving few parameters. It is shown that generalization error is minimized not when there are an infinite number of sensors, but a number of sensors equal to half the number of samples in the training set. The minimum generalization error is related to a single parameter of the sensor spatial location distribution, derived based on weak laws of large numbers in geometric probability. The finite number of training samples acts like a budgeting variable, similar to a total communication power constraint.
Lecture Information
Recorded: | 2011-05-25 16:15 - 16:35, Club B |
---|---|
Added: | 22. 6. 2011 01:40 |
Number of views: | 125 |
Video resolution: | 1024x576 px, 512x288 px |
Video length: | 0:21:56 |
Audio track: | MP3 [7.43 MB], 0:21:56 |
Comments