SuperLectures.com

CONVERGENCE OF A DISTRIBUTED PARAMETER ESTIMATOR FOR SENSOR NETWORKS WITH LOCAL AVERAGING OF THE ESTIMATES

Full Paper at IEEE Xplore

Distributed and Collaborative Signal Processing

Přednášející: Jérémie Jakubowicz, Autoři: Pascal Bianchi, Gersende Fort, Walid Hachem, Jérémie Jakubowicz, LTCI Telecom ParisTech / CNRS, France

The paper addresses the convergence of a decentralized Robbins-Monro algorithm for networks of agents. This algorithm combines local stochastic approximation steps for finding the root of an objective function, and a gossip step for consensus seeking between agents. We provide verifiable sufficient conditions on the stochastic approximation procedure and on the network so that the decentralized Robbins-Monro algorithm converges to a consensus. We also prove that the limit points of the algorithm correspond to the roots of the objective function. We apply our results to Maximum Likelihood estimation in sensor networks.


  Přepis řeči

  Komentáře

Please sign in to post your comment!

  Informace o přednášce