Neural Network Bottleneck Features for Language Identification
Pavel Matejka, Le Zhang, Tim Ng, Sri Harish Mallidi, Ondrej Glembek, Jeff Ma and Bing Zhang |
---|
This paper presents the application of Neural Network Bottleneck (BN) features in Language Identification (LID). BN features are generally used for Large Vocabulary Speech Recognition in conjunction with conventional acoustic features, such as MFCC or PLP. We compare the BN features to several common types of acoustic features used in the state-of-the-art LID systems. The test set is from DARPA RATS (Robust Automatic Transcription of Speech) program, which seeks to advance state-of-the-art detection capabilities on audio from highly degraded radio communication channels. On this type of noisy data, we show that in average, the BN features provide a 45% relative improvement in the Cavg or Equal Error Rate (EER) metrics across several test duration conditions, with respect to our single best acoustic features.