Computationally Efficient Speaker Identification for Large Population Tasks using MLLR and Sufficient Statistics

A. K. Sarkar • S. Umesh • S. P. Rath

Department of Electrical Engineering Indian Institute of Technology Madras
June 28th, 2010

Outline

- Overview of Speaker Identification (Closed-Set)
- ▶ MAP adaptation and Top-C mixtures based Likelihood Estimation
- Speaker Identification using MLLR matrices
- ▶ Efficient Likelihood Calculation using MLLR matrices
- Cascade Identification System to improve Performance
- Summary

Overview of Speaker Identification (Closed-Set)

- Evaluate likelihood for all speaker models
 - Computationally expensive for large databases.

MAP adaptation and Top-*C* mixtures based Likelihood Estimation

Figure: Adapted Speaker dependent model with MAP.

- Top-C scoring steps
 - 1. Align test data w.r.t UBM and find Top-C mixtures/feature vector
 - 2. Evaluate Top-C mixtures for all speaker models i.e. $2048 + L \times C$ mixtures for L speaker models
- As L becomes large computation grows.

Speaker Model Training using MLLR adaptation

Propose: Use of MLLR to adapt "UBM mean" to "speaker-model mean"

• MLLR matrix is estimated using speaker's training data w.r.t UBM.

$$\hat{\mu}_{\mathit{spkr}} = W_{\mathit{spkr}} \, \mu_{\mathit{ubm}}$$
 ; $\mathit{spkr} = 1, 2, \dots, L$

- Speaker is characterized by MLLR matrix, W_{spkr}.
 - No model is formed.

Speaker Identification using MLLR matrices

- For a given unknown Test utterance and MLLR matrices of Speakers
- We identify speaker as:

$$\hat{S} = \max_{1 \le i \le L} Pr(X|\lambda_{UBM}, W_i)$$

- It looks like we still need to calculate likelihood for all speakers!
 - but this can be efficiently done.

Speaker Identification using MLLR and EM

$$Q(W_s, I) = \sum_{j=1}^{M} Pr(j|X, \lambda_{UBM}, I) \log Pr(X, j|\lambda_{UBM}, W_s)$$

$$\hat{S} = \arg \max_{W_s} Q(W_s, I)$$

where,

 $W_s \Rightarrow \mathsf{MLLR}$ matrix for speaker, s $I \Rightarrow \mathsf{identity}$ matrix

• W_s can be represented as

$$W_s = \left[\begin{array}{c} w_1 \\ w_2 \\ \vdots \\ w_D \end{array} \right]$$

Efficient Likelihood Calculation using MLLR matrices

- Do one alignment of test data w.r.t UBM (same as MAP+Top-C)
- Compute two statistics over all Gaussian components in the GMM-UBM using the test utterance, X, only once

$$K^{(i)} = \sum_{j=1}^{M} \frac{\mu_{j}^{(i)}}{\sigma_{j}^{(i)^{2}}} \sum_{t=1}^{T} \gamma_{j}(t) x'(t); \qquad G^{(i)} = \sum_{j=1}^{M} \frac{1}{\sigma_{j}^{(i)^{2}}} \mu_{j} \mu_{j}' \sum_{t=1}^{T} \gamma_{j}(t)$$

• Using $K^{(i)}$, $G^{(i)}$

only matrix multiplication to get speaker model likelihood

$$\hat{S} = \arg\max_{s} \left\{ -\frac{1}{2} \left\{ \sum_{i=1}^{D} (w_{s,i} G^{(i)} w'_{s,i} - 2K^{(i)} w'_{s,i}) \right\} \right\}$$

$$\frac{Pr(X|\lambda_{IBM}, W_{s})}{Pr(X|\lambda_{IBM}, W_{s})}$$

Illustration of Fast MLLR Speaker Identification System

$$\hat{S} = \arg\max_{s} \left\{ -\frac{1}{2} \left\{ \sum_{i=1}^{D} \left(w_{s,i} G^{(i)} w_{s,i}^{'} - 2 K^{(i)} w_{s,i}^{'} \right) \right\} \right\}$$

9 / 17

Comparison of GMM-UBM with Fast MLLR system

Computation Time

- 306 (122 Male, 184 female) speakers are used for evaluation (Closed-Set identification) from NIST 2004 SRE.
- Fast MLLR system performs poorer than GMM-UBM.
- But Fast MLLR system faster than GMM-UBM system.
- Longer utterance ▷ more gain in computation time.

Analysis of Computation Complexity & Performance

- Fast MLLR system: Time taken to identify speaker does not increase significantly as database size increases (Fig. a).
- N-best performance of both systems converge as N increases (Fig. b).

Cascade Identification System to improve Performance

Requires only one alignment of test data w.r.t UBM

Trade-off between Computation Complexity & Performance

• Experiment Result for 10sec. test segment

 306 (122 Male, 184 female) speakers (1163 test uttn.) are used for evaluation (Closed-Set identification) from NIST 2004 SRE

Trade-off between Computation Complexity & Performance

• Experiment Result for 1-side test segment

 For 1-side test segment cascade system becomes comparatively less faster than 10 sec. utterance due to the slower backend GMM-UBM identification system.

Summary

- As we increase value of N-best the performance of cascade system comes closer to GMM-UBM system.
- Tuning the value of N: a compromise between accuracy loss and system speed that can be achieved.
- For N=20, cascade system with 306 speakers.
 - For 10 sec. \Rightarrow 6.08× faster than GMM-UBM and 0.86% loss in Acc.
 - For 1-side \Rightarrow 3.16× faster than GMM-UBM and 1.04% loss in Acc.

Experimental setup

- Front End
 - 20 ms frames for every 10 ms
 - 21 mel filters over 300 3400 Hz
 - MFCC with (C_1 to C_{13} with Δ and $\Delta\Delta$ excluding C_0)
 - Frame Selection: Gaussian modeling of the energy component of frames
 - 0-mean and 1-Variance utterance level
- Background Modeling
 - Speaker Independent UBM (2048 mixt.) with diagonal covariance matrix
 - Training Data: NIST 2002 SRE and Switchboard-1 Release-2
- Evaluation: 1 side trn.: 10s & 1 side test condition of NIST-04 SRE
 - Speaker model & MLLR matrix using 1-iteration of MAP and MLLR w.r.t UBM (only mean adaptation) respectively.
 - Relevance factor, 16 is used during MAP.
 - There are 306 (122 male, 184 female) speakers for evaluation.
- Computer used for the experiment
 - Intel Quad Core (Q9550) processor @ 2.83Hz
 - 8 GB RAM

Thank You!