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People vs Collins, California 1968

Bystanders to a robbery testified that the perpetrators had been a
black male, with a beard and moustache, and a Caucasian female
with blonde hair in a ponytail. They had escaped in a yellow car.

An “instructor in mathematics” explained the multiplication rule
for probability, and the prosecutor invited the jury to consider the
probability that the accused pair, who fitted the above description,
were not the robbers. The prosecutor suggested that the jury
would be safe in estimating:

Black man with beard 1 in 10
Man with moustache 1 in 4

White woman with ponytail 1 in 10
White woman with blonde hair 1 in 3

Yellow car 1 in 10
Interracial couple in car 1 in 1000

The jury returned a verdict of guilty.



Forensic Identification Using DNA profiles

1. Sample left at scene of crime provides a DNA profile.

2. Defendant’s profile matches.

3. Based on a convenience sample of DNA profiles, together with
population genetics theory, it is estimated that about 1 person
in 1 million will have a matching profile.

How convinced should a juror be that the defendant is the source
of the crime sample?

Several answers given in the literature for the probability that the
defendant is guilty in an idealised ”Island Problem”:

1. P(G ) = 1/(1+E (X )) where X is the number of innocent
individuals with the profile on the island.

2. P(G ) = E [1/Z |Z > 0] where Z is the number of individuals
with the profile on the island before crime sample observed.

3. P(G ) = 1/(1+NP), standard application of Bayes Theorem.



The weight-of-evidence formula

Eventually a consensus emerged in favour of Bayes Theorem,
which in a general form can be written:

P(C=S|evidence) =
P(evidence & C=S)∑
X P(evidence & C=X)

where

I C is the source of the crime sample;

I S is the defendant;

I the summation
∑

is over all individuals X who might be C,
including S. (Could be over everyone on earth: the probability
vanishes for most.)



Assume that DNA evidence is assessed last. Then can rewrite
formula as

P(C=S|all evidence) =
1

1 +
∑

X wXRX

where

wX =
P(C=X|other evidence)

P(C=S|other evidence)
= prior odds ratio

RX =
P(DNA evidence|C=X)

P(DNA evidence|C=S)
= likelihood ratio (LR)

Assumption: DNA evidence is independent of the other evidence,
given C.

Some lessons learned from the weight-of-evidence formula ...



A. RX alone does not determine P(C=S).

Suppose that:

1. each of N possible culprits is, if not for the DNA evidence, in
much the same position as the defendant, so that wX = 1 for
all these individuals, and wX = 0 for everyone else;

2. RX is equal to a constant r .

Then

P(C=S|evidence) =
1

1 + Nr

So r = 1/1 million may not be convincing if N is large, plausible
e.g. in a big city.



B. Relatives may be important.

Assume N + B possible culprits (other than S):

I B brothers of S, and R = 1/100 for each of them;

I N unrelated men, R = 10−6 for each.

If w = 1 for each possible culprit, then

P(C=S|evidence) =
1

1 + B/100 + N/106

B may dominate even if N � B and there is no evidence against
any of the brothers.



C. Ethnicity of possible culprits may be important.

I N1 possible culprits have genetic background similar to that of
S, and N2 have a distinct genetic background.

I Positive correlations due to shared ancestry, and lack of
frequency estimates on fine scales ⇒ P(X has profile|S has it)
is larger for the former group than for the latter.

I So the N1 “similar genetic background” individuals can
dominate, even if N1 < N2. Argument essentially the same as
for brothers; here, difference in R not so great, but N1 usually
much larger than B.



D. Lab/handling error or tampering may be important.

Matching DNA profiles can arise because:

1. S=C and no error occurred;

2. S6=C, but S and C have matching “true” profile;

3. S6=C, different “true” profiles, but one or both were
incorrectly recorded, resulting in a match.

I A reasonable juror may assign 1 � P(3.) � P(2.).

I P(DNA evidence|C=X) involves a sum of P(2.) and P(3.), so
2. may be irrelevant if P(3.) � P(2.)

I It’s not the probability of any error that matters, but an error
that results in a match (c.f. Price, lotteries & printing errors).

I The probability of evidence tampering leading to a match is
almost always greater than RX , so arguably RX is always
irrelevant.



E. Effect of database search.

I After observing the crime scene profile, you search a database
of the DNA profiles of known individuals and find exactly one
match. The matching individual becomes the defendant S.

I The database search is like a hypothesis “trawl”, and so the
resulting evidence is weakened in proportion to the size of the
search.

I For example, if the match probability is 1/1 million, and there
are 1 million profiles in the database, then a match is
expected even if C isn’t in the database. So these data would
provide no evidence against S, right?



Wrong!

Probability analysis shows that evidence is slightly stronger after a
database search. Reasons:

1. non-matching individuals searched are (in effect) excluded as
possible culprits (so “N” becomes smaller);

2. observation of non-matches strengthens the evidence that the
profile is rare.

3. The hypothesis trawl analogy isn’t valid because we know in
advance that one of the hypotheses is true. Suppose the
database includes every possible culprit. Is the evidence
against the unique matching individual weak or strong?

4. The probability of a match in the database is irrelevant.
Although analogous with a common mode of statistical
reasoning, it is simply addressing the wrong problem and in
this setting is very misleading. Example: 1 million + 1
possible culprits, of whom 1 million have a profile in the
database.



Many difficulties remain
It’s almost impossible in practice to keep separate:

1. likelihood ratios: the domain of the expert witness

2. probabilities of hypotheses: the domain of the finder of fact.

I Although it is often convenient to think about a “defence
hypothesis”, as a matter of logic it consists of the universe of
all hypotheses other than the prosecution hypothesis.

I The forensic scientist often has to make subjective judgements
about which alternative hypotheses are so implausible that
they need not be considered (e.g. the voice is that of a spirit
capable of perfect mimicry or aliens from another planet).

I The number of contributors to a DNA sample can never be
bounded above based on the DNA profile alone.

I The profile evidence is often consistent with a moderately-high
rate of contamination, and the decision to assume
contamination rate ≈ 0 is based on (subjective) prior
knowledge of the profiling process and previous casework.

I Although sin is ultimately unavoidable, we should maintain the
goal of righteous behaviour and be aware of deviations from it.
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Brief introduction to short tandem repeat (STR) profiling

I Short tandem repeat (or “microsatellite”) : DNA motif,
usually 4 bp, repeated say 5 to 20 times

I High mutation rate: ∼ 1 per 500 generations
I repeat number is highly variable in the population, typically

4–8 common alleles

I Typing is not sequence based
I measure time to traverse a distance under an electric charge
I time ∝ molecular weight ⇒ repeat number can be inferred
I can analyse multiple loci in one run using both length and

colour separation.

I Resulting single-locus genotype: a pair of integers such as 7,9
I 7 copies of motif on one chromosome, 9 on the other
I partial repeats sometimes occur, e.g. 9.3
I whole profile typically 10 – 20 loci.



Electropherogram: mutiplexing via colour separation



Where do the probabilities underlying LRs come from?

I In my subjective opinion frequency-based notions of
probabilities have little direct applicability to the central issue
in a criminal trial, which focusses on a specific event.

I For DNA evidence, probabilities emerge from population
genetics theory;

I but ultimately the choice of theory is subjective, and all
theories include subjective elements.

I The probability that two individuals X and S share a DNA
allele depends on their relatedness. Three levels:

1. Known relatedness: eg. uncle of X = grandfather of S.
2. Relatedness due to unknown shared ancestors, measured by

FST (or θ).
3. Completely unrelated.



Where do the probabilities underlying LRs come from?

I Much ink has been wasted on concerns about independence
across genetic loci

I but “independence” of two events is not an absolute yes/no, it
depends on the conditioning

I conditional on relatedness, Mendel’s laws imply independence.

I Independence of an individual’s two alleles within a population
(Hardy-Weinberg Equilibrium) is an empirical approximation,
much argued over but actually of little importance:

I At a single locus

RX = P(G (X )=AB|G (S)=AB),

where G (X ) denotes “genotype of X”. So independence of
alleles across S and G matters, but independence of the two
alleles of X or of S is peripheral.



Plug-in estimates vs integration

I LRs for DNA profile evidence at a single locus depend on

1. estimates of allele frequencies in a relevant population,
obtained from a database

2. values for the population genetics parameter FST ; by
definition, directly-relevant estimates are not available, but we
do have estimates in many different populations.

I Whole-profile LR depends involves products/powers.
I Common to use plug-in estimates

I this keeps “training” or “background” data logically separate
from evidence data.

Ideally we should integrate over a distribution for unknowns
I but expectation of a high power can be � power of the

expectation

I I have worked with an awkward compromise of using plug-in
values but at high end of plausible range.



The “Random Man” Fallacy

I In an attempt to avoid the unavoidable subjectiveness, or
through laziness of thought, many writers have (implicitly)
assumed that the probabilities underlying the LR are
generated by random sampling of suspects in a population.

I Objective (in a sense), but clearly false.

I This approach leads to numerous problems:

1. Much ink spilled arguing over “in which population?”, but it is
like arguing over the number of wings on a tooth fairy. The
more narrowly the population is defined, the better for the
defendant, but this process leads to a “population” that
includes only the defendant.

2. “Random man” generated all the confusion over the “database
search” problem (above).

3. Leaves no way to think about
I role of relatives
I genetic background
I laboratory error/fraud
I incorporation of DNA with other evidence.
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US National Research Council report

“The evaluation of forensic DNA evidence” (Natl Acad. Press,
1996) is centred on a “random man” view of weight of evidence,
based on a null hypothesis of:

INRC : The defendant was chosen randomly in a

population of innocent possible culprits

The report is riddled with errors and confusion, but the prestige of
the NRC is such that it still holds sway in the US, and seems in
effect unchallengeable.



Misunderstandings in the NRC report

1. NRC: “If the calculated profile probability is small ... even a
large relative error will not change the conclusion”;

WRONG (see A above).

2. NRC: “Because one or a few relatives in a large population
will have only a very slight effect on [profile frequency], we
believe that the importance of unknown relatives has been
exaggerated”;

WRONG see B.

3. NRC: “Most of the time, we believe, the subgroup of the
suspect is irrelevant”;

WRONG see C.



Misunderstandings in the NRC report

4. NRC: “We believe that a calculation that combines error rates
with match probabilities is inappropriate”;

WRONG see D. But it is not for forensic scientist to combine
the two; this should be done by jurors themselves, with
forensic scientists giving evidence to guide them e.g. describing
quality assurance mechanisms and results of blind trials.

5. NRC: “The initial identification of a suspect through a search
of a DNA profile database is analogous to performing a coin
toss experiment many times”;

WRONG see E. If you toss 20 coins many times, it becomes
more and more likely that you will eventually get 20 heads, but
this is irrelevant to weight of evidence against the individual
who matches; this person has not been “tossed” repeatedly.



Population genetics in the NRC report

I The committee which advised the NRC included prominent
population geneticists, and it discussed population genetic
issues at length.

I However, it only considered population genetic effects on the
profile frequency P(X has profile), rather than on the LR (or
match probability) P(X has profile|S has it),

I The report does briefly refer to the match probability, but it
assumed independence of X and S without comment, thus
missing the point of how population genetics affects DNA
profile evidence.

I The NRC report therefore has almost nothing useful to say on
the role of population genetic effects on DNA evidence,
despite devoting to it many pages of misguided discussion.



Low Copy Number (or Low Template) STR profiling

I STR profiling has traditionally used at least 1 ng of DNA
I Recently various enhancements of the technique, such as extra

PCR cycles for additional replication, have allowed template
levels as low as ∼20 pg to generate DNA profiles

I this is approximately the DNA content of three cells

I Useful for miniscule traces of DNA e.g. extracted from touch
marks or even residue of breath

I Problems:

dropout e.g. PCR amplification fails entirely
dropin due to isolated contaminant DNA, e.g. from

laboratory plasticware
peak imbalance can confuse interpretation of mixtures

(multi-source profiles)
exaggerated stutter can confuse interpretation of mixtures —

may mask an allele of a low-level contributor



© ESR 2008
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Electropherogram

Dropout threshold

Limit of detection
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R v. Bates and Garside (London, 2003-2006)

I Bates alleged to have murdered Mrs Garside, in collusion with
Mr Garside

I multiple DNA samples obtained from crime scene, many
profiling runs on a 10-locus STR system

I Most incriminating profile was a mixture:
I major component from victim: 17 distinct alleles
I weak minor profile from a male: 8 alleles not masked by major

profile

I Bates’ profile includes 11 alleles NOT included in Mrs
Garside’s profile

I all 11 expected in minor profile if Bates were source





Minor component
Mrs expected

Locus Garside Bates observed if Bates

D3 16,16 13,16 13 13
VWA 15,17 16,16 16 16
D16 11,12 11,12 — —
D2 20,20 19,22 22 19,22
D8 12,13 8,13 8 8
D21 30,32.2 30,31.2 31.2 31.2
D18 14,14 12,15 — 12,15
D19 12,14 12,15 15 15
THO1 9.3,9.3 7,7 7 7
FGA 23,25 21,21 21 21



Discordant alleles

3 defendant alleles missing under prosecution case
I referred to as “voids” by successive judges

I misleading term, I prefer “discordant” (with prosecution
hypothesis)

I one in stutter position to a major-profile homozygote allele
I two at a high molecular weight locus

I more susceptible to dropout?

I some signs of an allele in some profiling runs, not to reporting
standards

I threshold of 50 rfu



Inclusion probabilities and the “2p rule”

The inclusion probability (or Random Man not Excluded, RMNE)
is the probability that a “random man” would not be excluded by
the DNA evidence. At a single locus:

P(RMNE ) =


if no minor component allele observed 1

if allele A only observed 2pA

if A and B (single contributor) 2pApB

if A and B (multiple contributors) (pA+pB)2

For > 2 alleles use square of sum of observed allele proportions.

I if no allele observed: no information; so in effect neutral
I if 1 allele: P(RMNE) = 1− (1−pA)2 = 2pA − p2

A < 2pA

I called the “2p rule”
I claimed to be conservative because of “<”

I if 2 alleles (single contributor): no dropout
I usual match probability applies.



What’s wrong with RMNE ?

I when dropout and dropin are possible, exclusion never occurs

I discordant alleles always assumed to be neutral
I but in presence of masking (e.g. by allele of victim) an

observation of no non-victim alleles can be very informative
I in fact a null result is always (weakly) informative, see below

I RMNE does not use the profile of the suspect
I so doesn’t exploit valuable information from homozygotes, who

are much less likely to drop out
I does not distinguish alleles from known and unknown

contributors

I difficult to allow for relatedness and remote kinship (FST )

I difficult to combine with other evidence.
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Likelihood ratio: one unknown and one known contributor

We seek expressions for single-locus likelihood ratios of the form

LR =
P(DNA evidence | s and v source)

P(DNA evidence | x and v source)

where:

s ≡ defendant (or suspect)
v ≡ known contributor (e.g. victim)
x ≡ an unknown individual assumed to be unrelated to s

and the DNA evidence consists of the profiles of s and v and the
crime scene profile (CSP).



Data Reduction: observed alleles and dropout

Ideally we would analyse all the DNA evidence – including all the
details of every epg. We would then model the background noise,
and all the peak heights whether allelic or not.

I Very ambitious task for statistical modelling.

Instead, we assume that the full epg data are reduced to a list of
alleles reaching a threshold. We then need to define

I dropout: an allele that generates a subthreshold peak, or no
peak, due to part or complete failure of the PCR reaction.

The heights of sub-threshold peaks are informative

I but difficult to analyse in a systematic way, so

I ignoring this information may be a pragmatic option.

Our LR is based only on yes/no information for alleles observed
and dropped out.



Dropout probabilities for a single allele

Da ≡ P(allele a drops out)

I depends on DNA template level, allele fragment length and
level of degradation of the sample. It can also vary according
to locus-specific and lab-specific factors.

I Features of the epg, such as heights of observed peaks, total
number of observed alleles, and number of loci showing
complete dropout, can be informative about Da, together with
the results of controlled experiments.

I Here we will not focus on estimating Da but instead explore
how the LR varies as a function of Da.

I Simplifying assumption: Da ≡ D for all a
I not realistic
I may be a pragmatic assumption when data are lacking for

modelling Da.



Dropout probabilities for homozygotes

Assume we know Da

I what is Daa, the probability of dropout for an aa homozygote?

First guess: dropout is all-or-nothing, and occurs independently for
the two alleles of a homozygote

I then Daa = D2
a

But often dropout (in our sense) is partial. Two signals may
individually fail to reach the reporting threshold but reach it when
superposed

I so Daa < D2
a .

On the basis of a small amount of data kindly provided by LGC, I
have assumed that Daa = αD2

a and in practice used α = 1/2.

I not realistic when D → 1 (since Daa is never > α)



LR calculation: no v ; s ≡ AB , CSP ≡ A; x , s unrelated

We assume Da and Daa constant over a (write D and D2).

LR =
P(CSP ≡ A, s ≡ AB|Hs)

P(CSP ≡ A, s ≡ AB|Hx)

=
P(CSP ≡ A|s ≡ AB,Hs)

P(CSP ≡ A|s ≡ AB,Hx)

=
(1−D)D

p2
A(1−D2) + 2pA(1−pA)(1−D)D

I In numerator, allele B of s dropped out but A did not.

I Denominator involves sum over all possible genotypes for x .

I We assume HWE and known population allele proportion pA.



Allowing for masking

Masking can be from alleles of v directly, or from artefacts such as
stutter from an allele of v .

I Treating stutter as masking means that there may or may not
be an allele of x underlying a stutter peak generated by an
allele of v .

Let M denote the set of masking alleles, m = |M|, and write pM for
the sum of the allele proportions of the elements of M. Here CSP
denotes only the non-masking alleles, so that CSP ∩M = ∅. Then

LR =
P(CSP ≡ A|s ≡ AB,M,Hs)

P(CSP ≡ A|s ≡ AB,M,Hx)

=
D(1−D) if B /∈ M, (1−D) otherwise

p2
A(1−D2) + 2pA(1−D)[(1−pA−pM)D + pM ]

Always < non-masking LR.



Allowing for dropin

I Dropin refers to presence of tiny fragments of DNA that can
generate a spurious allele, but not a whole genome
contribution from an additional unknown contributor.

I Relevant even if not evident under prosecution case.

I Multiple dropin events might be better modelled as an
additional contributor with dropout.

If one dropin allele possible:

LR =
(1−D)D(1−C )

Q(1−C ) + Q ′CpA
< no dropin LR

where

Q = denominator from masking LR

Q ′ = P(both alleles of s drop out)

In the plots that follow we assume ten alleles at the locus, each
with p = 0.1;



The 2p rule is not conservative
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LR values vs RMNE

I The RMNE formulae are almost always unfair to defendants
when dropout and dropin are possible.

I A null observation can be very informative in presence of
masking.

I Even with no masking, a null result it is (slightly) incriminating
for a heterozygote and exculpatory for a homozygote.

I 2p rule is always unfair to defendant, especially with masking.
I Even 2pApB (when A and B alleles are observed) is not fair

when dropout and dropin are possible, and particularly when
there is masking.

I LR can point towards or away from s, possibly depending on
D and D2.

I RMNE can never favour defendant.



Case of Smith (Sacramento, CA)

I CSP shows mixture of DNA from at least 2 persons
I one known male contributor k , profiled
I from X and Y peak heights, roughly even mixture of male and

female
I assume one unknown (female) contributor
I suspected female contributor s, profiled

I Large amount of dropout from both contributors
I no alleles observed at 5 out of 15 loci ⇒ D ≈ 0.75

I Prosecution reported a probability of 1 in 96K, obtained by
applying a multiple-contributor RMNE only to the seven loci
at which an allele of s was observed in the CSP.



Locus Known k Suspected s CSP RMNE

D8 13,16 12,13 12,13,16 4
D21 28,30 29,29 28 1
D7 8,10 9,10 — 1
CSF 8,10 10,11 — 1
D3 14,16 16,17 16 4.3
THO1 7,7 9.3,9.3 7 1
D13 11,13 8,12 — 1
D16 12,13 11,12 12,13 4.0
D2 19,24 17,25 24 1
D19 12,13 13,15 12,13 6.5
VWA 18,20 19,20 18,20 18
TPO 9,9 11,12 9,11 7.0
D18 13,15 12,17 — 1
D5 8,12 11,13 8,11,12 1.7
FGA 21,22 22,24 — 1

Product 96K



Criticisms

I at 4 of 7 loci used for RMNE probability, all CSP alleles are in
known profile

I little or no support for claim of suspect DNA being present

I RMNE takes no account that at two loci for which suspect is
homozygous, the allele was not observed in CSP (both
homozygotes of known contributor were observed)

I LR calculation
I assume D and D2 are the same for both known k and

suspected s contributors
I two assumptions about the 9 alleles shared by k and s (5 of

these appear in CSP, 4 do not):

1. they are assumed “masked” by k with certainty
2. they are assumed to come from k with probability 0.5,

otherwise from unknown contributor.

I results below are under assumption 1; assumption 2 leads to
slightly smaller LR.



Known Suspected LR RMNE
Locus k s CSP D=0.5 court modified

D8 13,16 12,13 12,13,16 4.5 4 3.4
D21 28,30 29,29 28 0.38 1 1
D7 8,10 9,10 — 1.1 1 1
CSF 8,10 10,11 — 1.1 1 1
D3 14,16 16,17 16 1.4 4.3 1
THO1 7,7 9.3,9.3 7 0.38 1 1
D13 11,13 8,12 — 1.1 1 1
D16 12,13 11,12 12,13 0.93 4.0 1
D2 19,24 17,25 24 0.84 1 1
D19 12,13 13,15 12,13 1.1 6.5 1
VWA 18,20 19,20 18,20 1.4 18 1
TPO 9,9 11,12 9,11 1.3 7.0 2.0
D18 13,15 12,17 — 1.1 1 1
D5 8,12 11,13 8,11,12 0.88 1.7 1.2
FGA 21,22 22,24 — 1.1 1 1

Product 2.0 96K 8.3



Conclusions

I Much progress has been made in the interpretation of DNA
profile evidence.

I Likelihood ratios are crucial to this advance
I must be understood within the context of Bayes Theorem

I Many problems yet to be overcome.

I Some instances of good practice in presenting DNA evidence
in court.

I Much remains unsatisfactory.


