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Introduction

@ The low dimensional i-vector representation of speech
segments opens up new possibilities for using Bayesian
methods in speaker recognition.

@ You can go a long way with Bayesian methods under the
assumptions that speaker and channel effects are
Gaussian and statistically independent.

@ You can do better by relaxing the Gaussian assumption. In
particular, it seems to be possible to do away with score
normalization in speaker verification.

@ The directional scattering behavior which appears to
explain the success of cosine distance scoring in speaker
recognition can be modeled by relaxing the statistical
independence assumption. (This part of the talk is
speculative.)
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Gaussian PLDA

Joint Factor Analysis with i-vectors

Each recording is represented by a single vector of dimension
F known as an i-vector (e.g. F = 400).

Given a speaker and i-vectors Dy, ..., Dg we assume
D, =S+ C

where
@ R is the number of recordings of the speaker, indexed by r
@ S depends on the speaker, C, depends on the channel
@ S and C; are statistically independent (?)
@ S and C, are multivariate Gaussian (?)

To begin with, we assume both statistical independence and
Gaussianity.
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Gaussian PLDA

Probabilistic Linear Discriminant Analysis

Under Gaussian assumptions, this model is known in face
recognition as PLDA [Prince and Elder].

The between-speaker covariance matrix is Cov(S, S).

The within-speaker covariance matrix is Cov(C;, C,) (assumed
to be independent of r).

If the feature dimension F is high, these matrices cannot be
treated as full rank.
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Gaussian PLDA

Hidden variable formulation of Gaussian PLDA

Assume that there are low dimensional, normally distributed
hidden variables x; and xo, such that

D, = m+ Uixq + UsXor + €.

The residual ¢, is normally distributed with mean 0 and
precision matrix A (typically diagonal).
@ mis the center of the acoustic space
@ Xy depends only on the speaker (speaker factors)
@ the columns of U; are the eigenvoices

Cov(S,S) = U, U;

@ X, varies from one recording to another (channel factors)
@ the columns of U, are the eigenchannels

Cov(Cr, Cr) = N1+ Up U™,
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Gaussian PLDA

Graphical model for Gaussian PLDA

Including x», enables the decomposition
COV(Cr, Cr) = /\_1 + U2U2*.

This is not needed in all cases and, under Gaussian
assumptions, xo, can always be eliminated at recognition time
(later).
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Gaussian PLDA

Working assumptions

Assume for the time being that
@ we have succeeded in estimating the model parameters
(m’ U1 ) U27 /\)
@ given a collection D = (Dy, ..., Dg) of i-vectors associated
with a speaker, we have figured out how to evaluate the
marginal likelihood (“the evidence”)

P(D) = / P(D, h)dh

where h represents the entire collection of hidden variables
associated with the speaker.
We will show how to do speaker recognition in this situation and

how both of these problems can be tackled by using variational
Bayes to approximate the posterior distribution P(h|D).
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Gaussian PLDA

PLDA speaker recognition

Given two i-vectors Dy and D, suppose we wish to perform the
hypothesis test

Hy : The speakers are the same
Ho : The speakers are the different.
The likelihood ratio is
P(Dy, Da|Hy)
P(D1|Ho)P(D2|Ho)

Every term here is an evidence integral of the form

/ P(D, h)dh.

The likelihood ratio for any type of speaker recognition or
speaker clustering problem can be written down just as easily.
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Gaussian PLDA

Approximating the evidence

The evidence P(D) can be evaluated exactly in the Gaussian
case but this involves inverting large (sparse) block matrices
[Prince and Elder].

Even in the Gaussian case, it is more efficient to use a
variational approximation: if Q(h) is any distribution on h and

E:E[In P(D”’)]

ah)

then
L <InP(D)

with equality iff Q(h) = P(h|D) [Bishop].

Variational Bayes provides a principled way of finding a good
approximation Q(h) to P(h|D).
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Gaussian PLDA

Why are posteriors generally intractable?

There is nothing mysterious about the posterior P(h|D). By
Bayes rule,
P(D|h)P(h)

P(D)
The problem in practice is that the normalizing constant 1/P(D)
— the evidence — cannot be evaluated:

P(h|D) =

P(D) = / P(D|h)P(h)dh.

Another way of stating the difficulty is that whatever
factorizations (i.e. statistical independence assumptions) exist
in the prior P(h) are destroyed in the posterior by taking the
product P(D|h)P(h).
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Gaussian PLDA

Example

X1 and xo, are independent in the prior:
P(XQ,‘X1) = P(Xgr)

but this is not true if D, is observed. Since D, depends on both
X1 and xor, knowing x; changes the conditional distribution of
Xor.

P(xor|Dr, X1) # P(X2r| D).
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Gaussian PLDA

Variational Bayes

Set xo = (X21,...,X2R). X1 and xz are independent in the prior
but they are correlated in the posterior.

The idea in variational Bayes is to force independence in the
posterior so that we seek an approximation to P(x, xo| D) of the
form

Q(x1, x2) = Q(x1)Q(xX2).

Q(x1) and Q(xo) are estimated by the standard update formulas

INQ(xy) = Ex, [InP(D, xq,x2)] + const
InQ(x2) = Ex, [InP(D, xq,x2)] + const
which do not involve inverting large block matrices and are

guaranteed to increase the value of £ on each iteration
[Bishop].

12/41
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Gaussian PLDA

The variational posterior is also the key to estimating
the model parameters

13/41

The model parameters (m, Uy, Us, A\) are estimated by
maximizing the evidence criterion

> L(s)

where s ranges over all of the speakers in a training set.

We defined

E:E[In P(D’“)]

Q(h)
It is convenient to decompose this as
L =E[InP(D|h)] — KL(Q(h)||P(h)).

Note that the second term does not involve the model
parameters at all.
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Gaussian PLDA

Maximum likelihood estimation

As a first step towards maximizing the evidence, we sum the
contributions from the first term over all training speakers

> _E[InP(D(s)|A(s)]

and maximize this with respect to the model parameters. We
refer to this as maximum likelihood estimation.

This expression is formally the same as the EM auxiliary
function in probabilistic principal components analysis [Bishop].

The only difference is that the expectations are evaluated with
the variational posteriors rather than the true posteriors.
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Gaussian PLDA

Minimum divergence estimation

Another way to increase the value of the objective function is to
find affine transformations of the model parameters and hidden
variables

(m, U1,U2,/\) — (m’, U4,Ué,/\/)
h(s) — H(s)

which preserve the value of the EM auxiliary function but
minimize the sum of divergences

S KL (Q(H(s)|P((s)) -

We refer to this as minimum divergence estimation.
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Gaussian PLDA

Example

Applying this to the speaker factors x1(s) amounts to finding an
affine transformation such that the posterior moments of x{(s)
agree with those of the prior on average:

ZCOV (8),xi(s)) = |
LB = 0

where S is the number of speakers in the training set. The
model parameters are then updated by applying the inverse
transformation to m and U; so as to preserve the value of the
EM auxiliary function.

Interleaving maximum likelihood and minimum divergence
estimation helps to accelerate convergence.
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Gaussian PLDA

Variational Bayes allows other possibilities to be
explored ...

These estimation procedures are adequate for speaker
recognition but hard-core Bayesians would avoid point
estimates of the model parameters altogether.

For example, it is possible to put a prior on Uy and calculate a
posterior with variational Bayes.

In theory, even the number of speaker factors could be treated
as a hidden variable, rather than a parameter that has to be
manually tuned. (Analogous to the the treatment of the number
of mixture components in Bayesian estimation of Gaussian
mixture models [Bishop].)

There is an extensive literature on Bayesian principal
components analysis.
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Heavy-tailed PLDA

Replacing the Gaussian distribution by Student’s ¢

The Student’s t distribution is a heavy tailed distribution in the
sense that the density P(x) has the property that there is a
positive exponent k such that

P(x) = O(Ix|~)
as | x| — oo. Compare this with the Gaussian distribution:
P(x) = O(e "I*/2),

Like the Gaussian distribution, the Student’s t distribution is
unimodal but it is less susceptible to some well known problems
of Gaussian modeling:
@ The Gaussian assumption effectively prohibits large
deviations from the mean (“Black Swans”)
@ Maximum likelihood estimation of a Gaussian (i.e. least
squares) can be thrown off by outliers.
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Heavy-tailed PLDA

Definition of Student’s t suitable for variational Bayes

The Student’s t distribution can be represented as a continuous
mixture of Gaussians, using a construction based on the
Gamma distribution.

The Gamma distribution G(a, b) is a unimodal distribution on
the positive reals whose density is given by

P(u) < u®'e™®™ (u>0).

The parameters a and b enable the mean and the variance to
be adjusted independently:
E[u] = a/b
Var(u) = a/b?.
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Heavy-tailed PLDA

A random vector x has a Student’s t distribution with n degrees
of freedom, mean p and scale parameter A (roughly speaking,
the precision matrix) if

X ~ N, (uN) ™), u ~ G(n/2,n/2)
where N indicates the normal distribution and G the Gamma
distribution.

At one extreme (n — oo) the variance of u is 0 and this reduces
to the Gaussian distribution.

At the other (n = 1), this reduces to the Cauchy distribution.
This is so heavy-tailed that the variance and all higher order
moments are infinite.

The term "degrees of freedom" comes from classical statistics.
It doesn’t mean anything in particular in this context.
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Heavy-tailed PLDA

Example

To make the distribution of the channel factors x,, heavy-tailed,
introduce a scalar hidden variable uo,:

1
<

r:]:2: ........ LR

Xar ~ N(0, uy,' 1) where up, ~ G(n2/2, N2 /2)
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Heavy-tailed PLDA

Graphical model for heavy-tailed PLDA

In heavy-tailed PLDA all of the hidden variables xq, xo, and ¢,
have Student’s t distributions:

SOSON N
OG- (OO

r=L12,..

Extra hidden variables: uy, U, and vy.

Extra parameters: the numbers of degrees of freedom ny, n.
and v.
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Heavy-tailed PLDA

Variational Bayes carries over straightforwardly

Heavy-tailed PLDA is fully diagonalizable — only diagonal
matrices need to be inverted for variational Bayes (see the

paper).

If no = v, the channel factors x5, can be eliminated at
recognition time and variational Bayes converges very quickly.

Idea: Let P be the orthogonal matrix whose columns are the
eigenvectors of the effective covariance matrix A= 4+ U, Us*.
Rotate both the model and the data by P to obtain an
equivalent model with a diagonal residual precision matrix and
no channel factors.

The numbers of degrees of freedom ny, n» and v can be
estimated (by divergence minimization) using the evidence
criterion.
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Heavy-tailed PLDA

Gaussian vs. Student’s t on telephone data

Gaussian Student’s ¢

EER/DCF EER/DCF
short2-short3 | 3.6%/0.014 | 2.2%/0.010
8conv-short3 | 3.7%/0.009 | 1.3%/0.005
10sec-10sec | 16.4%/0.070 | 10.9% / 0.053

@ NIST 2008 SRE English language female data
@ EER = equal error rate, DCF = 2008 detection cost function
@ unnormalized likelihood ratios
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Heavy-tailed PLDA

The effect of score normalization

Gaussian Student’s ¢

EER/DCF EER/DCF
short2-short3 | 2.7%/0.013 | 2.4%/0.012
8conv-short3 | 1.5%/0.009 | 0.8%/0.007
10sec-10sec | 13.3%/0.063 | 12.8% / 0.066

@ likelihood ratios normalized with s-norm (see the paper)
@ helpful in the Gaussian case, harmful for Student’s t

@ one exception (EER 0.8% for 8conv-short3), not
statistically significant

@ even with normalization, Student’s tis better than Gaussian
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Heavy-tailed PLDA

Score normalization is usually needed in order to set a
trial-independent decision threshold for speaker verification. It
is typically fragile and computationally expensive.

A good generative model for speech should produce likelihood
ratios which do not need to be normalized (or even calibrated).

Score normalization is needed in practice because outlying
recordings tend to produce exceptionally low scores for all of
the trials in which they are involved.

In the Student’s  case, the hidden variables uy, us, and v,
seem to model these outliers adequately.
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Heavy-tailed PLDA

The curious case of microphone speech

For telephone speech
@ Gaussian PLDA with score normalization gives results
which are comparable to cosine distance scoring

@ Heavy-tailed PLDA without score normalization gives
better results. The error rates are about 25% lower than for
traditional Joint Factor Analysis.

For microphone speech heavy-tailed PLDA breaks down in an
interesting way.
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Heavy-tailed PLDA

In a companion paper, we describe an i-vector extractor
suitable for speaker recognition with both microphone and
telephone speech (F = 600).

Using only telephone speech, we first trained a model without
channel factors
Dr:m+ U‘|X1 +€r

with a full precision matrix for the residual e,.

We augmented this with channel factors trained only on
microphone speech:

Dr = m+ Urxy + UzrXor + €.
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Heavy-tailed PLDA

It turns out that the microphone channel factors are Cauchy
distributed (n, < 1).

Speaker recognition breaks down unless the model is
constrained (by flooring the number of degrees of freedom) so
that microphone transducer effects have finite variance.

In this case, Student’s t modeling is no better than Gaussian.

Perhaps the best course would be to project away the
troublesome dimensions using linear discriminant analysis
(classical LDA or PLDA).
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Directional scattering

How can this behavior be modeled probabilistically?

Plots of GMM supervectors for different speakers (Tang, Chu
and Huang, ICASSP 2009) illustrating directional scattering.
The x and y axes are essentially the first two i-vector
components.
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Directional scattering

Caution: The directional scattering effect in these plots is
probably exaggerated. The utterances are conversation turns
(which may be very short), not conversation sides, and the
authors use relevance MAP, not eigenvoice MAP, to estimate
supervectors. An artifact of relevance MAP is that the longer an
utterance, the further the supervector from the origin.

Still, directional scattering seems to be the only possible
explanation for the success of cosine distance scoring in
speaker recognition. (But does anybody know how to account
for it?)

There appears to be a principal axis of session variability which
varies from one speaker to another. This is inconsistent with
the assumption that speaker and session effects are additive
and statistically independent.
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Directional scattering

A proposal for modeling directional scattering

Instead of representing a speaker by a single point x; in the
speaker factor space, we could represent the speaker by a
distribution specified by a mean vector ;. and a precision
matrix A. (This is different from the F x F residual precision
matrix previously denoted by A.)

i-vectors are generated by sampling “speaker factors” from this
distribution:
Dy = m+ Uy xq, + UaXor + €.

The trick is to choose a prior P(y, A) in which . and A are not
statistically independent. Since point estimation of x and A is
hopeless, it is necessary to integrate over i, and A with respect
to the prior P(u, A\). Do this with variational Bayes.
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Directional scattering

The Normal-Wishart prior

To generate observations for a speaker: First, generate an
N x N precision matrix A (where N is the dimension of the
speaker factors) by sampling from a standard Wishart prior

N~W(I,T).

The Wishart distribution with parameters W and =, W(W, 1), is
a generalization of the Gamma distribution. It is concentrated
on positive definite N x N matrices A and its density is given by:

P(A) o [A\|~N=1)/2 exp <—;Tr (WU\))) .

7 is the number of degrees of freedom: the larger 7, the more
peaked the distribution. There is no loss in generality assuming
a standard Wishart prior, W = I (other possibilities could be
accommodated by modifying Uy).
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Directional scattering

Next, generate the mean vector 1 for the speaker by sampling
from a Student’s t distribution with scale parameter A and
hidden variable w:

p~ N, (wh) ), w ~ G(a/2,5/2).

where, like 7, a and [ are parameters to be estimated. We will
get to the question of why a Student’s t distribution is needed
here in a moment. (Again, there is no loss of generality in
taking the mean of this Student’s t distribution to be 0.)

Since the distribution of 1 depends on A and w, A and x are not
statistically independent in the prior:

P(Alp) # P(A)

so there is some hope of modeling speaker-dependent
directional scattering.
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Directional scattering

Finally, generate “speaker factors” x;, for each the speaker’s
recordings by sampling from a Student’s t distribution with
mean p and scale parameter A:

Xir ~ N(M?(U1r/\)_1)au1rNg(n1/2>n1/2)'

The difference between the “speaker factors” x;, and the
channel factors xo, is that the distribution of x5, is assumed to
be speaker-independent whereas the model for x;, includes
speaker-dependent hidden variables A, i and w.

Thus x1, models both speaker variability and a particular type
of session variability.
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Directional scattering

Graphical model for xq,

The values of the parameters «, 6 and = determine whether this
model exhibits speaker-dependent directional scattering or not.
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Directional scattering

How can this capture directional scattering?

Compare the speaker-dependent distribution of the covariance
matrix A~" with the speaker-independent distribution:

T—N-1 1
TN [

- N + T — Wes
The effect of the second term (a rank 1 covariance matrix) is to
augment the variance in direction of the speaker's mean vector
7%

E [/\_1\W, u} =
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Directional scattering

Because u* is weighted by — NW the strength of this effect
depends on 7 and the parameters « and g8 which govern the
distribution of w:

Ew] = a/p
Var(w) = 2a/B2.

If « and 3 are such that the mean of w is large and the variance
is small, there is marked directional scattering for most
speakers. (This flexibility is achieved by taking P(u|A) to be
Students f rather than Gaussian.)

On the other hand if 3 = 7~ ' and 7 — oo, this model can be
shown to reduce to heavy-tailed PLDA and there is no
speaker-dependent directional scattering.

How well this works remains to be seen ...
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Directional scattering

Conclusion

Gaussian PLDA is an effective model for speaker recognition,
even though it is based on questionable assumptions, namely
that speaker and channel effects are additive, statistically
independent and normally distributed.

These assumptions can be relaxed by adding hidden variables
Uy, Uor, vr to model outliers and p, A, w to model directional
scattering.

The derivation of the variational Bayes update formulas is
mechanical and, because variational Bayes comes with EM-like
convergence guarantees, implementations can be debugged.
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Directional scattering

Caveat: In practice, to do the variational Bayes derivations, the
prior distributions of the hidden variables need to be in the
exponential family. For example, if you try to do heavy-tailed
PLDA with the text book definition of Student’s t, you will get
nowhere.

| believe that in order to get the full benefit of Bayesian
methods, you need informative priors whose parameters can
be elicited from training data. (This view is sometimes referred
to as “empirical Bayes”.)

For example, the priors on the additional hidden variables
Uy, U, vr and p, A, w — namely the degrees of freedom
ny, no, v and 7, a, 3 — can be estimated from training data
using the evidence criterion.
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