Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda

Modeling Prosody for Speaker Recognition: Why Estimating Pitch May Be a Red Herring

Kornel Laskowski & Qin Jin

Carnegie Mellon University Pittsburgh PA, USA

28 June, 2010

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000 ⁻					

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

	SPECTRAL "ENVELOPE"	FINE (e.g., HARMONIC) STRUCTURE
NTANEOUS \$MENTAL")	SPECTRAL SLOPE LPCCs SEGMENT MFCCs CLASSES	PITCH VOICING LIKELIHOOD VOICING CLASSES HARMONIC-
INSTA ("SEC	SEGMENT LIKELIHOODS ENERGIES	TO-NOISE HAMONIC-TO SUBHARMONIC
AL")	DIFFERENCES	DIFFERENCES
ΣĽ	TRENDS	TRENDS
EGME	PERTURBATION STATISTICS	PERTURBATION STATISTICS
RAJE RA-S	NGRAM POSTERIORS	NGRAM POSTERIORS
L"	CLASS DURATIONS	CLASS DURATIONS

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

- this talk explores what happens inside here
- low-level feature computation

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

- this talk explores what happens inside here
- Iow-level feature computation

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

- this talk explores what happens inside here
- Iow-level feature computation

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

- this talk explores what happens inside here
- Iow-level feature computation

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

Laskowski & Jin ODYSSEY 2010, Brno, Czech Republic

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

Prolegomena ○●○○	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda

Prolegomena ○●○○	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda

Prolegomena ○●○○	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
0000					

SOURCE DOMAIN

Essentially a 2-step process:

- Degin with a source-domain x
 - typically, the short-time FFT
- compute the transformed-domain y = f(x)
 - autocorrelation spectrum
 - real cepstrum
 - comb filterbank energies
 - and many others

② find the supremum of **y**, $F_0 = \arg \max \mathbf{y}$

Prolegomena ○○●○	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda

SOURCE DOMAIN

Essentially a 2-step process:

- Degin with a source-domain x
 - typically, the short-time FFT
- compute the **transformed-domain** $\mathbf{y} = f(\mathbf{x})$
 - autocorrelation spectrum
 - real cepstrum
 - comb filterbank energies
 - and many others

② find the supremum of **y**, $F_0 = \arg \max \mathbf{y}$

Prolegomena ○○●○	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda

SOURCE DOMAIN

Essentially a 2-step process:

- Degin with a source-domain x
 - typically, the short-time FFT
- compute the **transformed-domain** $\mathbf{y} = f(\mathbf{x})$
 - autocorrelation spectrum
 - real cepstrum
 - comb filterbank energies
 - and many others

2 find the supremum of \mathbf{y} , $F_0 = \arg \max \mathbf{y}$

Prolegomena ○○●○	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda

SOURCE DOMAIN

 \sim

Essentially a 2-step process:

- Degin with a source-domain x
 - typically, the short-time FFT
- compute the **transformed-domain** $\mathbf{y} = f(\mathbf{x})$
 - autocorrelation spectrum
 - real cepstrum
 - comb filterbank energies
 - and many others

2 find the supremum of \mathbf{y} , $F_0 = \arg \max \mathbf{y}$

Prolegomena ○○○●	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda
Outline	of this Talk				

- Harmonic Structure Transform
- Experiment: closed-set classification, 10-second trials
 - matched-multisession, matched-channel conditions
 - contrast with get_f0-estimated pitch
 - contrast with MFCCs
- Analysis
 - simulated perturbations
 - spectral envelope ablation
- Conclusions

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	000000				

Schroeder's "Harmonic Product Spectrum"

Given a continuous short-time spectrum S(f), Schroeder proposed

$$\Sigma(f) = 20 \log_{10} \sum_{n=1}^{N} |S(n f)|$$

- A M. R. Schroeder, 1968. "Period histogram and product spectrum: New methods for fundamental-frequency measurement", J. Acoust. Soc. Am. 43(4):829–834.
- B A. M. Noll, 1970. "Pitch determination of human speech by the harmonic product spectrum, the harmonic sum spectrum, and a maximum likelihood estimate", *Symposium on ComputerProcessing in Communication*, Microwave Institute (University of Brooklyn, New York), 19:779–797.

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	000000				

Schroeder's "Harmonic Product Spectrum"

Given a continuous short-time spectrum S(f), Schroeder proposed

$$\Sigma(f) = 20 \log_{10} \sum_{n=1}^{N} |S(n f)|$$

Noll dubbed this "harmonic compression". (Distinctly **non-linear**.)

- A M. R. Schroeder, 1968. "Period histogram and product spectrum: New methods for fundamental-frequency measurement", J. Acoust. Soc. Am. 43(4):829–834.
- B A. M. Noll, 1970. "Pitch determination of human speech by the harmonic product spectrum, the harmonic sum spectrum, and a maximum likelihood estimate", *Symposium on ComputerProcessing* in *Communication*, Microwave Institute (University of Brooklyn, New York), **19**:779–797.

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	000000				

Schroeder's "Harmonic Product Spectrum"

Given a continuous short-time spectrum S(f), Schroeder proposed

$$\Sigma(f) = 20 \log_{10} \sum_{n=1}^{N} |S(n f)|$$

Noll dubbed this "harmonic compression". (Distinctly **non-linear**.)

- A M. R. Schroeder, 1968. "Period histogram and product spectrum: New methods for fundamental-frequency measurement", J. Acoust. Soc. Am. 43(4):829–834.
- B A. M. Noll, 1970. "Pitch determination of human speech by the harmonic product spectrum, the harmonic sum spectrum, and a maximum likelihood estimate", *Symposium on ComputerProcessing* in *Communication*, Microwave Institute (University of Brooklyn, New York), **19**:779–797.

Prolegomena	Harmonic Structure ○●○○○○○	Experiments	Analysis 000000	Conclusions	Addenda
Dirac Cor	nb Filterbank				

- the alternative: design a continuous-frequency comb filter
 - for each candidate fundamental frequency of interest

- no "compression difficulties" during discretization
 filtering is a linear operation
- here: each filter is defined over 300-8000 Hz
- a set of such comb filters (here: 400) yields a filterbank
 from 50 Hz to 450 Hz, spaced 1 Hz apart
- A J. A. Moorer, 1974. "The optimum comb method for pitch period analysis of continuous digitized speech", IEEE Trans. Acoustics, Speech, and Signal Proc. 22(5):330–338.

Prolegomena	Harmonic Structure ○●○○○○○	Experiments	Analysis 000000	Conclusions	Addenda
Dirac Con	nb Filterbank				

- the alternative: design a continuous-frequency comb filter
 - for each candidate fundamental frequency of interest

- no "compression difficulties" during discretization
 filtering is a linear operation
- here: each filter is defined over 300-8000 Hz
- a set of such comb filters (here: 400) yields a filterbank
 from 50 Hz to 450 Hz, spaced 1 Hz apart
- A J. A. Moorer, 1974. "The optimum comb method for pitch period analysis of continuous digitized speech", IEEE Trans. Acoustics, Speech, and Signal Proc. 22(5):330–338.

Prolegomena	Harmonic Structure ○●○○○○○	Experiments	Analysis 000000	Conclusions	Addenda
Dirac Con	nb Filterbank				

- the alternative: design a continuous-frequency comb filter
 - for each candidate fundamental frequency of interest

- no "compression difficulties" during discretization
 - filtering is a linear operation
- here: each filter is defined over 300-8000 Hz
- a set of such comb filters (here: 400) yields a filterbank
 from 50 Hz to 450 Hz, spaced 1 Hz apart
- A J. A. Moorer, 1974. "The optimum comb method for pitch period analysis of continuous digitized speech", IEEE Trans. Acoustics, Speech, and Signal Proc. 22(5):330–338.

Prolegomena	Harmonic Structure ○●○○○○○	Experiments	Analysis 000000	Conclusions	Addenda
Dirac Con	nb Filterbank				

- the alternative: design a continuous-frequency comb filter
 - for each candidate fundamental frequency of interest

- no "compression difficulties" during discretization
 - filtering is a linear operation
- here: each filter is defined over 300-8000 Hz
- a set of such comb filters (here: 400) yields a filterbank
 from 50 Hz to 450 Hz, spaced 1 Hz apart

A J. A. Moorer, 1974. "The optimum comb method for pitch period analysis of continuous digitized speech", IEEE Trans. Acoustics, Speech, and Signal Proc. 22(5):330–338.

Prolegomena	Harmonic Structure ○○●○○○○	Experiments	Analysis 000000	Conclusions	Addenda

• in software, have a discrete FFT x

- sampling frequency: 16 kHz
- frame size: 32 ms
- 257 discrete real, non-negative frequencies (bins)

here: assume each comb tooth is triangularRiemmann sample the triangular comb filter

- note: the resulting discrete comb filters are not harmonic
- A J.-S. Liénard, C. Barras & F. Signol, 2008. "Using sets of combs to control pitch estimation errors", *Proc.* 155th Meeting ASA, Paris, France.

Prolegomena	Harmonic Structure ○○●○○○○	Experiments	Analysis 000000	Conclusions	Addenda

• in software, have a discrete FFT x

- sampling frequency: 16 kHz
- frame size: 32 ms
- 257 discrete real, non-negative frequencies (bins)

here: assume each comb tooth is triangular

- 2 Riemmann sample the triangular comb filter
- note: the resulting discrete comb filters are not harmonic
- A J.-S. Liénard, C. Barras & F. Signol, 2008. "Using sets of combs to control pitch estimation errors", *Proc.* 155th Meeting ASA, Paris, France.

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda

• in software, have a discrete FFT x

- sampling frequency: 16 kHz
- frame size: 32 ms
- 257 discrete real, non-negative frequencies (bins)

here: assume each comb tooth is triangular Riemmann sample the triangular comb filter

• note: the resulting discrete comb filters are not harmonic

A J.-S. Liénard, C. Barras & F. Signol, 2008. "Using sets of combs to control pitch estimation errors", *Proc.* 155th Meeting ASA, Paris, France.

Prolegomena	Harmonic Structure ○○●○○○○	Experiments	Analysis 000000	Conclusions	Addenda

in software, have a discrete FFT x

- sampling frequency: 16 kHz
- frame size: 32 ms
- 257 discrete real, non-negative frequencies (bins)

here: assume each comb tooth is triangular

Riemmann sample the triangular comb filter

J.-S. Liénard, C. Barras & F. Signol, 2008. "Using sets of combs to control pitch estimation errors", Proc. 155th Meeting ASA, Paris, France,

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda

in software, have a discrete FFT x

- sampling frequency: 16 kHz
- frame size: 32 ms
- 257 discrete real, non-negative frequencies (bins)

here: assume each comb tooth is triangular

- Riemmann sample the triangular comb filter
- note: the resulting discrete comb filters are not harmonic

A J.-S. Liénard, C. Barras & F. Signol, 2008. "Using sets of combs to control pitch estimation errors", Proc. 155th Meeting ASA, Paris, France,

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	0000000				

Normalizing Harmonic Energy by Non-Harmonic Energy

• the discrete comb filterbank forms a matrix H

) its application to FFT **x** is a matrix multiplication $(\mathbf{H}^T \mathbf{x})$

3 and subtract the log-energy found everywhere else in x

$$\begin{split} \tilde{\mathbf{H}} &\equiv \mathbf{1} - \mathbf{H} \\ \mathbf{y} &= \log\left(\mathbf{H}^{\mathsf{T}}\mathbf{x}\right) - \log\left(\tilde{\mathbf{H}}^{\mathsf{T}}\mathbf{x}\right) \end{split}$$

• y is effectively a vector of harmonic-to-noise ratios (HNRs)

A E. Yumoto & W. Gould, 1982. "Harmonics-to-noise ratio as an index of the degree of hoarseness", J. Acoust. Soc. Am. 71(6):1544–1550.
Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	000000				

- the discrete comb filterbank forms a matrix H
 - $oldsymbol{0}$ its application to FFT $oldsymbol{x}$ is a matrix multiplication $ildsymbol{(H^{ au} x)}$
 - We take the logarithm at the output (as for Mel energies)
 - and subtract the log-energy found everywhere else in **x**

$$\begin{split} \tilde{\mathbf{H}} &\equiv \mathbf{1} - \mathbf{H} \\ \mathbf{y} &= \log\left(\mathbf{H}^T \mathbf{x}\right) - \log\left(\tilde{\mathbf{H}}^T \mathbf{x}\right) \end{split}$$

• y is effectively a vector of harmonic-to-noise ratios (HNRs)

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	0000000				

- the discrete comb filterbank forms a matrix H
 - $oldsymbol{0}$ its application to FFT $oldsymbol{x}$ is a matrix multiplication $ildsymbol{(H^{ au} x)}$
 - We take the logarithm at the output (as for Mel energies)
 - and subtract the log-energy found everywhere else in x

$$\begin{split} \tilde{\mathbf{H}} &\equiv 1 - \mathbf{H} \\ \mathbf{y} &= \log\left(\mathbf{H}^{T} \mathbf{x}\right) - \log\left(\tilde{\mathbf{H}}^{T} \mathbf{x}\right) \end{split}$$

• y is effectively a vector of harmonic-to-noise ratios (HNRs)

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	0000000				

- the discrete comb filterbank forms a matrix **H**
 - $oldsymbol{0}$ its application to FFT $oldsymbol{x}$ is a matrix multiplication $ildsymbol{(H^{ au} x)}$
 - We take the logarithm at the output (as for Mel energies)
 - ${f 0}$ and subtract the log-energy found everywhere else in ${f x}$

$$\begin{aligned} \tilde{\mathbf{H}} &\equiv 1 - \mathbf{H} \\ \mathbf{y} &= \log\left(\mathbf{H}^{T}\mathbf{x}\right) - \log\left(\tilde{\mathbf{H}}^{T}\mathbf{x}\right) \end{aligned}$$

• y is effectively a vector of harmonic-to-noise ratios (HNRs)

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	0000000				

- the discrete comb filterbank forms a matrix **H**
 - **1** its application to FFT **x** is a matrix multiplication $(\mathbf{H}^T \mathbf{x})$
 - We take the logarithm at the output (as for Mel energies)
 - and subtract the log-energy found everywhere else in x

$$\begin{split} \tilde{\mathbf{H}} &\equiv 1 - \mathbf{H} \\ \mathbf{y} &= \log\left(\mathbf{H}^{T}\mathbf{x}\right) - \log\left(\mathbf{\tilde{H}}^{T}\mathbf{x}\right) \end{split}$$

y is effectively a vector of harmonic-to-noise ratios (HNRs)

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	0000000				

- the discrete comb filterbank forms a matrix **H**
 - **1** its application to FFT **x** is a matrix multiplication $(\mathbf{H}^T \mathbf{x})$
 - we take the logarithm at the output (as for Mel energies)
 - and subtract the log-energy found everywhere else in x

$$\tilde{\mathbf{H}} \equiv 1 - \mathbf{H}$$
$$\mathbf{y} = \log(\mathbf{H}^{T}\mathbf{x}) - \log(\tilde{\mathbf{H}}^{T}\mathbf{x})$$

y is effectively a vector of harmonic-to-noise ratios (HNRs)

A E. Yumoto & W. Gould, 1982. "Harmonics-to-noise ratio as an index of the degree of hoarseness", J. Acoust. Soc. Am. 71(6):1544–1550.

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	0000000				

- the discrete comb filterbank forms a matrix H
 - **(1)** its application to FFT **x** is a matrix multiplication $(\mathbf{H}^T \mathbf{x})$
 - we take the logarithm at the output (as for Mel energies)
 - and subtract the log-energy found everywhere else in x

• y is effectively a vector of harmonic-to-noise ratios (HNRs)

A E. Yumoto & W. Gould, 1982. "Harmonics-to-noise ratio as an index of the degree of hoarseness", J. Acoust. Soc. Am. 71(6):1544–1550.

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	0000000				

Feature Vector Decorrelation

- the elements of y are correlated
- transform ${\boldsymbol{y}}$ by
 - subtracting global mean
 - 2 orthogonalizing (rotating) via data-dependent \mathcal{F}_{CORR}^{-1}
 - truncating non-positive eigenvalue dimensions
- yields the harmonic structure cepstral coefficients

$$HSCC = \mathcal{F}_{CORR}^{-1} \left(\log \left(\mathbf{H}^{T} \mathbf{x} \right) - \log \left(\tilde{\mathbf{H}}^{T} \mathbf{x} \right) \right)$$
$$= \mathcal{F}_{CORR}^{-1} \left(\log \left(\mathbf{H}^{T} \mathbf{x} \right) \right) - \underbrace{\mathcal{F}_{CORR}^{-1} \left(\log \left(\tilde{\mathbf{H}}^{T} \mathbf{x} \right) \right)}_{\mathbf{H}^{T} \mathbf{X}^{T} \mathbf{X}^{T}$$

normalization term

- two options for \mathcal{F}_{CORR}^{-1} :
 - PCA: conditionally independent of labels
 - 2 LDA: conditioned on labels

Prolegomena	Harmonic Structure ○○○○○●○	Experiments	Analysis 000000	Conclusions	Addenda

Similarities with the Mel Filterbank, M

$$\begin{split} \mathsf{MFCC} &= \mathcal{F}_{COS-II}^{-1} \left(\log \left(\mathsf{M}^{\mathsf{T}} \mathsf{x} \right) \right) - \langle \text{normalization term} \rangle \\ \mathsf{HSCC} &= \mathcal{F}_{CORR}^{-1} \left(\log \left(\mathsf{H}^{\mathsf{T}} \mathsf{x} \right) \right) - \langle \text{normalization term} \rangle \end{split}$$

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	000000				

HST (here)

0000 000000 000000 00000 0000 0000	Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
		000000				

HST (here)

FFV (previous work)

frame FFT

 \mathbf{x}_t

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	000000				

00000 000000 000000 0000 0000 0000	Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
		000000				

HST (here)

00000 00000 000000 00000 00000 0000	Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
		000000				

HST (here)

as a function of i

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	000000				

HST (here)

FFV (previous work)

frame FFT \mathbf{x}_t

frame	FFT
\mathbf{x}_{t-}	-1

as a function of i

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	000000				

HST (here)

FFV (previous work)

as a function of i

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
	000000				

HST (here)

as a function of i

Prolegomena Hari	monic Structure	Experiments	Analysis	Conclusions	Addenda
	00000				

HST (here)

as a function of i

FFV (previous work)

as a function of i

Prolegomena	Harmonic Structure	Experiments ••••••	Analysis	Conclusions	Addenda
Experime	ents: Data				

- WSJ: LDC CSR-I (WSJ0) & LDC CSR-II (WSJ1)
- 102 female (♀) speakers, 95 male (♂) speakers
- closed-set classification, 10-second trials
 - TRAINSET: 5 minutes
 - DEVSET: 3 minutes, # trials: 1775 (\wp) and 1660 (\circlearrowleft)
 - TESTSET: 3 minutes, # trials: 1510 (\circ) and 1412 (\circ)
- matched channel, Sennheiser HMD414 (.wv1)
- matched multi-session:
 - 4-20 sessions per speaker
 - $\bullet~{\rm Train-/Dev-/Test-}$ Sets drawn from most sessions

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
		000000			

F_0 /GMM Baseline System (not in paper)

• extract F_0 using get_f0

- Snack Sound Toolkit: ESPS, default settings
- note: relies on dynamic programming
- 2 transform voiced frames to \log_2 domain
 - ignore unvoiced frames

N _G	Fer	nale	М	ale
	DevSet	EvalSet	DevSet	EVALSET
1	12.31	12.71	17.15	17.41
8	17.48	17.94	25.91	27.62
16	16.70	17.44	26.21	27.44
256	17.62	18.36	25.91	26.02

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
		000000			

HSCC System Configuration

Parameter/Aspect	HSCC System
pre-emphasis	no
framing	8ms/32ms
window	Hann
N _D	to optimize
N _G	to optimize
UBM	no
SAD	no

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
		0000000			

HSCC Vector Rotation and Truncation

- pick number of dimensions N_D
 - set number of (diagonal-covariance) Gaussians $N_G = 1$
 - train PCA, LDA on TRAINSET
 - choose N_D to maximize accuracy on DEVSET

Prolegomena	Harmonic Structure	Experiments ○○○○●○○	Analysis 000000	Conclusions	Addenda
Results I					

 \bullet with \textit{N}_{D} fixed, find \textit{N}_{G} to maximize DevSet accuracy \rightarrow 256

System	Fema	ale, ç	Male, ♂		
System	Dev	Test	Dev	Test	
get_f0	17.62	18.36	26.21	27.44	
HSCC/LDA	99.72	99.87	99.70	99.65	

there is speaker-discriminative information in the transformed-domain, beyond the arg max

- discarding it leads to much worse performance
- improving arg max estimation appears unnecessary
 - arg max estimation = pitch estimation

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
		0000000			

Contrastive MFCC/GMM System

Parameter/Aspect	HSCC System	MFCC System
pre-emphasis	no	yes
framing	8ms/32ms	8ms/32ms
window	Hann	Hamming
N _D	52-53 (opt)	20
N _G	256 (opt)	256 (opt)
UBM	no	no
SAD	no	no

Prolegomena	Harmonic Structure	Experiments ○○○○○●	Analysis 000000	Conclusions	Addenda

Results II

System	Fema	ale, ç	Male, ♂	
System	Dev	Test	Dev	Test
HSCC/LDA	99.72	99.87	99.70	99.65
MFCC	98.66	99.27	99.34	98.58
MFCC/LDA	98.71	99.27	99.34	98.87
$HSCC/LDA \oplus MFCC$	100.00	100.00	99.70	99.87

ISCC performance comparable to MFCC performance

• in these experiments, always better

- equal-weight score-level fusion can yield improvement
 - HSCC and MFCC appear complementary

Prolegomena	Harmonic Structure	Experiments	Analysis ●○○○○○	Conclusions	Addenda
Some Pe	rturbations				

Evaluate several types of perturbation:

- source-domain frequency range ablation
 - low frequency (LF) cutoff
 - high frequency (HF) cutoff
- 2 transformed-domain frequency resolution
- source-domain spectral envelope ablation

Simplify analysis suite by:

- using $N_G = 1$ diagonal-covariance Gaussian per speaker
- \bullet computing accuracy DevSet only
- plotting accuracy as a function of N_D

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
			00000		

Source-Domain Low Frequency (LF) Range

 \bullet modify the low-frequency cutoff for source-domain (FFT) x

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
			00000		

Source-Domain Low Frequency (LF) Range

 \bullet modify the low-frequency cutoff for source-domain (FFT) x

Source-Domain Low Frequency (LF) Range

modify the low-frequency cutoff for source-domain (FFT) x

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
			000000		

Source-Domain High Frequency (HF) Range

 $\bullet\,$ modify the high-frequency cutoff for source-domain (FFT) x

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
			00000		

Source-Domain High Frequency (HF) Range

 $\bullet\,$ modify the high-frequency cutoff for source-domain (FFT) x

Source-Domain High Frequency (HF) Range

• modify the high-frequency cutoff for source-domain (FFT) x

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
			000000		

Transformed-Domain Frequency Resolution

 ${\ensuremath{\, \bullet }}$ modify the resolution of the transformed-domain ${\ensuremath{\, y }}$

400 filters 1.0 Hz apart

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
			000000		

Transformed-Domain Frequency Resolution

 ${\ensuremath{\bullet}}$ modify the resolution of the transformed-domain ${\ensuremath{y}}$

200 filters 2.0 Hz apart

400 filters 1.0 Hz apart

800 filters 0.5 Hz apart

Transformed-Domain Frequency Resolution

• modify the resolution of the transformed-domain y

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
			000000		

Source-Domain Spectral Envelope Ablation

- lifter the low-quefrency components of source-domain (FFT) x
- low-order CCs approximate low-order MFCCs

lifter 0 CCs

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
			000000		

Source-Domain Spectral Envelope Ablation

- lifter the low-quefrency components of source-domain (FFT) x
- low-order CCs approximate low-order MFCCs

lifter 0 CCs

lifter 13 CCs

lifter 20 CCs

Source-Domain Spectral Envelope Ablation

- lifter the low-quefrency components of source-domain (FFT) x
- low-order CCs approximate low-order MFCCs

Prolegomena	Harmonic Structure	Experiments	Analysis ○○○○●	Conclusions	Addenda
Analysis	Findings				

- HSCC representation appears to be robust to perturbation
 - low-frequency source-domain range (q: 4%, \lhd : 1.5%)
 - high-frequency source-domain range (♀: 4%, ♂: 5%)
 - transformed domain resolution (♀: 4%, ♂: 2%)
 - source-domain envelope ablation (♀: 2.5%, ♂: 1.5%)
- generally, performance for \wp speakers more sensitive
- even under perturbed conditions, vastly outperform the system based on pitch alone
- not known how a pitch tracker would perform

Prolegomena 0000	Harmonic Structure	Experiments	Analysis	Conclusions ●○○○	Addenda
Summary	of Findings				

- Information available to (but discarded by) (some) pitch trackers is valuable.
- **②** HSCC performance is comparable to MFCC performance.
- **③** HSCC information is complimentary to MFCC information.
- ISCC modeling is as easy as MFCC modeling.

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions ○●○○	Addenda
	1 / 1				

Recommendations/Impact

The presented evidence suggests:

- should not invest time in improving estimation of the transformed-domain arg max (i.e., pitch)
 - simply model the entire transformed-domain
- if require pitch for other ("high-level") features
 - **should not discard transformed-domain** following arg max estimation
- using the entire transformed-domain may lead to a paradigmatic shift in the modeling of prosody

Prolegomena	Harmonic Structure	Experiments 0000000	Analysis 000000	Conclusions ○○●○	Addenda 00000
Of Immed	diate Interest .				

- I don't know how the HSCC vector compares to other "instantaneous" prosody vectors
- don't know how the HSCC vector performs under session, channel, distance, or vocal effort mismatch conditions
- other classifiers might be better-suited to the size of the transformed-domain (SVMs, etc.)
- existing prosody systems employ high-level features
 - first-, second-, Nth-order differences
 - modulation spectrum
- **o** would prefer data-independent feature rotation/compression
 - would significantly improve understanding
 - would permit UBMing
 - would allow use in large-dataset tasks (e.g., NIST SRE)

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions ○○○●	Addenda

Thank You!

This work was particularly inspired by:

- J.-S. Liénard, C. Barras & F. Signol, 2008. "Using sets of combs to control pitch estimation errors", Proc. 155th Meeting ASA, Paris, France.
- M. R. Schroeder, 1968. "Period histogram and product spectrum: New methods for fundamental-frequency measurement", JASA 43(4):829–834.
- A. F. Huxley, 1969. "Is resonance possible in the cochlea after all?", Nature 221:935-940.

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda ●○○○○

- estimate the FFV spectrum $\mathbf{g}\left[\rho\right]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

- pass $\mathbf{g}\left(
 ho
 ight)$ through a filterbank to yield $\mathbf{G}\in\mathbb{R}^7$
- decorrelate **G**

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda ●○○○○

- estimate the FFV spectrum $\mathbf{g}\left[\rho\right]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - repeat for a continuum of ρ values

- pass $\mathbf{g}\left(
 ho
 ight)$ through a filterbank to yield $\mathbf{G}\in\mathbb{R}^7$
- decorrelate **G**

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda ●○○○○

- estimate the FFV spectrum $\mathbf{g}\left[\rho\right]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

- pass ${f g}\left(
 ho
 ight)$ through a filterbank to yield ${f G}\in {\Bbb R}^7$
- decorrelate **G**

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda ●○○○○

• estimate the FFV spectrum $\mathbf{g}\left[\rho\right]$

- estimate the power spectra F_L and F_R
- dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
- dot product with undilated F_L
- $\bullet\,$ repeat for a continuum of $\rho\,$ values

• pass $\mathbf{g}\left(
ho
ight)$ through a filterbank to yield $\mathbf{G}\in\mathbb{R}^7$

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda ●○○○○

- estimate the FFV spectrum $\mathbf{g}\left[\rho\right]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

- pass $\mathbf{g}\left(
 ho
 ight)$ through a filterbank to yield $\mathbf{G}\in\mathbb{R}^7$
- decorrelate G

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda ●○○○○

• estimate the FFV spectrum $\mathbf{g}\left[\rho\right]$

- estimate the power spectra F_L and F_R
- dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
- dot product with undilated F_L
- $\bullet\,$ repeat for a continuum of $\rho\,$ values

• pass $\mathbf{g}\left(
ho
ight)$ through a filterbank to yield $\mathbf{G}\in\mathbb{R}^7$

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda ●○○○○

- estimate the FFV spectrum $\mathbf{g}\left[\rho\right]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

- pass $\mathbf{g}\left(
 ho
 ight)$ through a filterbank to yield $\mathbf{G}\in\mathbb{R}^7$
- decorrelate G

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda ●○○○○

• estimate the FFV spectrum $\mathbf{g}\left[\rho\right]$

- estimate the power spectra F_L and F_R
- dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
- dot product with undilated F_L
- $\bullet\,$ repeat for a continuum of $\rho\,$ values

• pass $\mathbf{g}\left(
ho
ight)$ through a filterbank to yield $\mathbf{G}\in\mathbb{R}^7$

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda ●○○○○

• estimate the FFV spectrum $\mathbf{g}[\rho]$

- estimate the power spectra F_L and F_R
- dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
- dot product with undilated F_L
- $\bullet\,$ repeat for a continuum of $\rho\,$ values

• pass ${f g}\left(
ho
ight)$ through a filterbank to yield ${f G}\in {\Bbb R}^7$

Prolegomena	Harmonic Structure	Experiments 0000000	Analysis 000000	Conclusions	Addenda ●○○○○

- estimate the FFV spectrum $\mathbf{g}[\rho]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

• pass $\mathbf{g}(
ho)$ through a filterbank to yield $\mathbf{G} \in \mathbb{R}^7$

- estimate the FFV spectrum $\mathbf{g}[\rho]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

pass g (ρ) through a filterbank to yield G ∈ ℝ⁷
 decorrelate G

- estimate the FFV spectrum $\mathbf{g}[\rho]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

- pass $\mathbf{g}(
 ho)$ through a filterbank to yield $\mathbf{G} \in \mathbb{R}^7$
- decorrelate **G**

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
					00000

$$\frac{\rho = 2^{-0.0342} = 0.9766}{\text{leave left FFT as is}}$$
dilate right FFT by ρ

 $\rho = 2^0 = 1$

leave left FFT as is leave right FFT as is

 $\rho = 2^{+0.0342} = 1.0240$

dilate left FFT by ρ leave right FFT as is

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
					00000

Prolegomena	Harmonic Structure	Experiments	Analysis 000000	Conclusions	Addenda ○○○●○

Some Distant Numbers ?

	Eval	Set1	EVALSET2		
	(Sess Mat)		(Sess Mis)		
	Chan	Chan	Chan	Chan	
	Mat	Mis	Mat	Mis	
MFCC	100.0	95.2	77.3	66.2	
HSCC _{old}	100.0	67.0	52.5	31.9	
HSCC _{new}	100.0	78.3	67.5	48.1	
err (%rel)	0	34.2	31.6	24.8	

Table: Classification accuracy (in %) using several different feature types, including the improved harmonic structure cepstral coefficients $HSCC_{new}$, in matched ("Mat") and mismatched ("Mis") session ("Sess") and channel ("Chan") conditions. "err (%rel)" indicates the relative reduction of error, in percent, from $HSCC_{old}$ to $HSCC_{new}$.

Prolegomena	Harmonic Structure	Experiments	Analysis	Conclusions	Addenda
					00000

What Do HSCCs Represent?

