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Inside (Per-Frame) Pitch Detection

DOMAIN
SOURCE

argmax

DOMAIN
TRANSFORMED

Essentially a 2-step process:
0 begin with a source-domain x

typically, the short-time FFT

1 compute the transformed-domain
y = f (x)

autocorrelation spectrum
real cepstrum
comb filterbank energies
and many others

2 find the supremum of y, F0 = arg max y
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Outline of this Talk

1 Harmonic Structure Transform
2 Experiment: closed-set classification, 10-second trials

matched-multisession, matched-channel conditions
contrast with get f0-estimated pitch
contrast with MFCCs

3 Analysis

simulated perturbations
spectral envelope ablation

4 Conclusions
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Schroeder’s “Harmonic Product Spectrum”

Given a continuous short-time spectrum S (f ), Schroeder proposed

Σ (f ) = 20 log10

N∑

n=1

|S (n f )|

Noll dubbed this “harmonic compression”.
(Distincly non-linear.)

A M. R. Schroeder, 1968. “Period histogram and product spectrum:
New methods for fundamental-frequency measurement”, J. Acoust.

Soc. Am. 43(4):829–834.

B A. M. Noll, 1970. “Pitch determination of human speech by the
harmonic product spectrum, the harmonic sum spectrum, and a
maximum likelihood estimate”, Symposium on ComputerProcessing

in Communication, Microwave Institute (University of Brooklyn, New
York), 19:779–797.

n = 2

n = 3

n = 4
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Dirac Comb Filterbank

the alternative: design a continuous-frequency comb filter

for each candidate fundamental frequency of interest

0

1

no “compression difficulties” during discretization

filtering is a linear operation

here: each filter is defined over 300–8000 Hz

a set of such comb filters (here: 400) yields a filterbank

from 50 Hz to 450 Hz, spaced 1 Hz apart

A J. A. Moorer, 1974. “The optimum comb method for pitch period analysis of continuous digitized speech”,
IEEE Trans. Acoustics, Speech, and Signal Proc. 22(5):330–338.
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Discrete Comb Filterbank

in software, have a discrete FFT x
sampling frequency: 16 kHz
frame size: 32 ms
257 discrete real, non-negative frequencies (bins)

0

1

1 here: assume each comb tooth is triangular
2 Riemmann sample the triangular comb filter

note: the resulting discrete comb filters are not harmonic

A J.-S. Liénard, C. Barras & F. Signol, 2008. “Using sets of combs to control pitch estimation errors”, Proc.

155th Meeting ASA, Paris, France.
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Normalizing Harmonic Energy by Non-Harmonic Energy

the discrete comb filterbank forms a matrix H
1 its application to FFT x is a matrix multiplication

(
HTx

)

2 we take the logarithm at the output (as for Mel energies)
3 and subtract the log-energy found everywhere else in x

H̃ ≡ 1 − H

y = log
(
HTx

)
− log

(

H̃Tx
)

y is effectively a vector of harmonic-to-noise ratios (HNRs)

A E. Yumoto & W. Gould, 1982. “Harmonics-to-noise ratio as an index of the degree of hoarseness”, J. Acoust.

Soc. Am. 71(6):1544–1550.
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H̃ ≡ 1 − H

y = log
(
HTx

)
− log

(

H̃Tx
)

0

1

y is effectively a vector of harmonic-to-noise ratios (HNRs)

A E. Yumoto & W. Gould, 1982. “Harmonics-to-noise ratio as an index of the degree of hoarseness”, J. Acoust.

Soc. Am. 71(6):1544–1550.
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Feature Vector Decorrelation

the elements of y are correlated
transform y by

1 subtracting global mean
2 orthogonalizing (rotating) via data-dependent F−1

CORR
3 truncating non-positive eigenvalue dimensions

yields the harmonic structure cepstral coefficients

HSCC = F−1
CORR

(

log
(

HTx
)

− log
(

H̃T x
))

= F−1
CORR

(

log
(

HTx
))

−F−1
CORR

(

log
(

H̃Tx
))

︸ ︷︷ ︸

normalization term

two options for F−1
CORR :

1 PCA: conditionally independent of labels
2 LDA: conditioned on labels
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Similarities with the Mel Filterbank, M

MFCC = F−1
COS−II

(

log
(

MTx
))

− 〈normalization term〉

HSCC = F−1
CORR

(

log
(

HT x
))

− 〈normalization term〉

columns
of M

· · · · · ·

columns
of H

· · · · · ·
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Similarities with the FFV Spectrum

HST (here) FFV (previous work)

(comb filter h)
idealized FFT

xt

frame FFT

as a function of i

fh [i + 1]

fh [i ]

fh [i − 1]

xt−1

dilated
xt−1

frame FFT
xt

frame FFT

as a function of i

2αi
, i > 0

2αi
, i < 0
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Experiments: Data

WSJ: LDC CSR-I (WSJ0) & LDC CSR-II (WSJ1)

102 female (♀) speakers, 95 male (♂) speakers

closed-set classification, 10-second trials

TrainSet: 5 minutes
DevSet: 3 minutes, # trials: 1775 (♀) and 1660 (♂)
TestSet: 3 minutes, # trials: 1510 (♀) and 1412 (♂)

matched channel, Sennheiser HMD414 (.wv1)

matched multi-session:

4–20 sessions per speaker
Train-/Dev-/Test- Sets drawn from most sessions
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F0/GMM Baseline System (not in paper)

1 extract F0 using get f0

Snack Sound Toolkit: ESPS, default settings
note: relies on dynamic programming

2 transform voiced frames to log2 domain

ignore unvoiced frames

NG Female Male
DevSet EvalSet DevSet EvalSet

1 12.31 12.71 17.15 17.41
8 17.48 17.94 25.91 27.62
16 16.70 17.44 26.21 27.44
256 17.62 18.36 25.91 26.02
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HSCC System Configuration

Parameter/Aspect HSCC System

pre-emphasis no
framing 8ms/32ms
window Hann

ND to optimize

NG to optimize

UBM no

SAD no
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HSCC Vector Rotation and Truncation

pick number of dimensions ND

set number of (diagonal-covariance) Gaussians NG = 1
train PCA, LDA on TrainSet
choose ND to maximize accuracy on DevSet

. ♀ ♂

A
cc

u
ra

cy

1 2 3 4 5 10 20 50 100 400
0
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40
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100

PCA, 60s
PCA, 30s
PCA, 10s
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LDA, 30s
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1 2 3 4 5 10 20 50 100 400
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40

60

80

100

PCA, 60s
PCA, 30s
PCA, 10s
LDA, 60s
LDA, 30s
LDA, 10s

. ND ND
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Results I

with ND fixed, find NG to maximize DevSet accuracy → 256

Female, ♀ Male, ♂
System

Dev Test Dev Test

get f0 17.62 18.36 26.21 27.44

HSCC/LDA 99.72 99.87 99.70 99.65

1 there is speaker-discriminative information in the
transformed-domain, beyond the arg max

discarding it leads to much worse performance

2 improving arg max estimation appears unnecessary

arg max estimation = pitch estimation
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Contrastive MFCC/GMM System

Parameter/Aspect HSCC System MFCC System

pre-emphasis no yes
framing 8ms/32ms 8ms/32ms
window Hann Hamming

ND 52-53 (opt) 20
NG 256 (opt) 256 (opt)
UBM no no

SAD no no
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Results II

Female, ♀ Male, ♂
System

Dev Test Dev Test

HSCC/LDA 99.72 99.87 99.70 99.65

MFCC 98.66 99.27 99.34 98.58
MFCC/LDA 98.71 99.27 99.34 98.87

HSCC/LDA ⊕ MFCC 100.00 100.00 99.70 99.87

1 HSCC performance comparable to MFCC performance

in these experiments, always better

2 equal-weight score-level fusion can yield improvement

HSCC and MFCC appear complementary

Laskowski & Jin ODYSSEY 2010, Brno, Czech Republic 19/29



Prolegomena Harmonic Structure Experiments Analysis Conclusions Addenda

Some Perturbations

Evaluate several types of perturbation:
1 source-domain frequency range ablation

low frequency (LF) cutoff
high frequency (HF) cutoff

2 transformed-domain frequency resolution

3 source-domain spectral envelope ablation

Simplify analysis suite by:

using NG = 1 diagonal-covariance Gaussian per speaker

computing accuracy DevSet only

plotting accuracy as a function of ND
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Source-Domain Low Frequency (LF) Range

modify the low-frequency cutoff for source-domain (FFT) x

300 Hz 8 kHz0 Hz 8 kHz 8 kHz600 Hz
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Source-Domain Low Frequency (LF) Range

modify the low-frequency cutoff for source-domain (FFT) x
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Source-Domain High Frequency (HF) Range

modify the high-frequency cutoff for source-domain (FFT) x

8 kHz300 Hz2 kHz0 Hz 300 Hz 4 kHz
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Transformed-Domain Frequency Resolution

modify the resolution of the transformed-domain y

400 filters
1.0 Hz apart

800 filters
0.5 Hz apart

200 filters
2.0 Hz apart
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Transformed-Domain Frequency Resolution

modify the resolution of the transformed-domain y
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Source-Domain Spectral Envelope Ablation

lifter the low-quefrency components of source-domain (FFT) x
low-order CCs approximate low-order MFCCs

lifter 0 CCs lifter 13 CCs lifter 20 CCs
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Analysis Findings

HSCC representation appears to be robust to perturbation

low-frequency source-domain range (♀: 4%, ♂: 1.5%)
high-frequency source-domain range (♀: 4%, ♂: 5%)
transformed domain resolution (♀: 4%, ♂: 2%)
source-domain envelope ablation (♀: 2.5%, ♂: 1.5%)

generally, performance for ♀ speakers more sensitive

even under perturbed conditions, vastly outperform the
system based on pitch alone

not known how a pitch tracker would perform
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Summary of Findings

1 Information available to (but discarded by)
(some) pitch trackers is valuable.

2 HSCC performance is comparable to MFCC performance.

3 HSCC information is complimentary to MFCC information.

4 HSCC modeling is as easy as MFCC modeling.
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Recommendations/Impact

The presented evidence suggests:

1 should not invest time in improving estimation of the
transformed-domain arg max (i.e., pitch)

simply model the entire transformed-domain

2 if require pitch for other (“high-level”) features

should not discard transformed-domain following arg max
estimation

3 using the entire transformed-domain may lead to a
paradigmatic shift in the modeling of prosody
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Of Immediate Interest ...

1 don’t know how the HSCC vector compares to other
“instantaneous” prosody vectors

2 don’t know how the HSCC vector performs under session,
channel, distance, or vocal effort mismatch conditions

3 other classifiers might be better-suited to the size of the
transformed-domain (SVMs, etc.)

4 existing prosody systems employ high-level features

first-, second-, Nth-order differences
modulation spectrum

5 would prefer data-independent feature rotation/compression

would significantly improve understanding
would permit UBMing
would allow use in large-dataset tasks (e.g., NIST SRE)
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Thank You!

This work was particularly inspired by:

1 J.-S. Liénard, C. Barras & F. Signol, 2008. “Using sets of combs to
control pitch estimation errors”, Proc. 155th Meeting ASA, Paris, France.

2 M. R. Schroeder, 1968. “Period histogram and product spectrum: New
methods for fundamental-frequency measurement”, JASA 43(4):829–834.

3 A. F. Huxley, 1969. “Is resonance possible in the cochlea after all?”,
Nature 221:935-940.
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Fundamental Frequency Variation

estimate the FFV spectrum g [ρ]

estimate the power spectra FL and FR

dilate FR by a factor 2ρ, ρ > 0
dot product with undilated FL

repeat for a continuum of ρ values time domain

freq domain

pass g (ρ) through a filterbank to yield G ∈ R7

decorrelate G
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Fundamental Frequency Variation (3)

ρ = 2−0.0342 = 0.9766

leave left FFT as is
dilate right FFT by ρ
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Fundamental Frequency Variation (3)
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Some Distant Numbers ?

EvalSet1 EvalSet2
(Sess Mat) (Sess Mis)

Chan Chan Chan Chan
Mat Mis Mat Mis

MFCC 100.0 95.2 77.3 66.2

HSCCold 100.0 67.0 52.5 31.9
HSCCnew 100.0 78.3 67.5 48.1

err (%rel) 0 34.2 31.6 24.8

Table: Classification accuracy (in %) using several different feature types,
including the improved harmonic structure cepstral coefficients HSCCnew ,
in matched (“Mat”) and mismatched (“Mis”) session (“Sess”) and
channel (“Chan”) conditions. “err (%rel)” indicates the relative
reduction of error, in percent, from HSCCold to HSCCnew .
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What Do HSCCs Represent?
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