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Outline of the presentation

● Non-parametric density estimation 

● Baseline mean shift 

● Why it requires adaptation 

● Bayesian setting (seek the modes of the posterior)

● Distances – Divergences

● Proposed Kernels 

● Exponential family basics

● Derivation of the proposed algorithm

● Experiments & future work
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Basics about the mean-shift algorithm

What's that? 

● An elegant non-parametric approach to clustering

● # clusters are not required to be known a priori

● Also known as mode seeking algorithm

● Alternative to hierarchical clustering, spectral clustering, etc.

  Current applications 

● Image segmentation

● Discontinuity preserving filtering

● Boundary detection

● Object tracking (2D & 3D)

Main references

All of D. Comaniciu & P. Meer, expecially 

“Mean Shift: a robust approach towards feature space analysis”, IEEE-PAMI, May 2002
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An example from image segmentation
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An example from discontinuity preserving filtering

(Comaniciu & Meer, IEEE - PAMI, '02)

Stafylakis, et al, Speaker Odyssey '10, Brno



  6

Examples from boundary detection

(Comaniciu & Meer, IEEE - PAMI, '02)
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Contribution of the proposed method

● The original mean-shift acts on the space of observations (RGB, LUV, etc.)

● Several clustering tasks require probabilistic parametric models as entities

● Example: speaker clustering, i.e. given N utterances merge those being from   

 the same speaker

● Note: We always assume that the #clusters is unknown

● Task: Adapt the mean-shift to act on the space of parametric models.

The proposed method:

● is based on the exponential family (Normal, Poisson, Gamma, Beta, 

multinomial, categorical, etc.)

● uses a Bayesian statistical setting (basically conjugate-exponential models)

● Can be explained completely using the theory of Information Geometry 

(Amari, Rodriguez, Snoossi, a.o.)

Limitations of the mean-shift algorithm:
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The original mean-shift algorithm (I)

Standard non-parametric density estimation

We have some data X, generated from an unknown pdf  

We estimate the pdf using Parzen windows

Assume only radically symmetric kernels, i.e. 

The normal (Gaussian) kernel

The estimated pdf is as follows

where h is the bandwidth of the kernel.
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The original mean-shift algorithm (II)

Parametric vs. non-parametric

● Non-parametric models allow #parameters grow linearly with #data points, n,

● Make very few assumptions about the data generating process.

● The parameters are the data points themselves + the bandwidth.

● The bandwidth can be variable, depending of the density of the region.

Fig.1: Real world clusters exhibit arbitrary shapes 

Basic problem with non-parametric modeling

● You rarely have enough data to estimate the pdf robustly.

● #observations required grows exponentially with the dimensionality.

● You don't obtain compact representation of the models. 
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The original mean-shift algorithm (III)

But do actually we need to estimate the underlying pdf robustly?

Assume a standard clustering task...

Target: 

a point-estimate about the cluster assignments for each observation.

Requirements: 

a) a method to detect the modes of the pdf.

b) a method to assign each observation to the appropriate mode.

That's all we need – that's what the mean-shift does!

a) It uses direclty the gradient of the pdf to estimate the modes.

b) It provides a method to assign the data to the modes.

Let's see how it works...
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The original mean-shift algorithm (IV)

Differentiate it w.r.t. x, and set to zero (i.e. mode seeking)

Define the differential kernel profile                         the gradient yields

where

and the mean-shift vector

which vanishes iff a mode (or a saddle point) has been detected!

proportional to the density estimated using the kernel with profile g(x)

Recall the expression of the estimated pdf 
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The original mean-shift algorithm (V)

The actual algorithm

We need to find where the mean-shift vector vanishes. 

Recall that

The matrix                                            contains the convergent points. 

Stafylakis, et al, Speaker Odyssey '10, Brno

Each iteration independent of the other. Ideal for cluster computing 
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Motivation for the proposed method

How to adapt this idea to operate on the space of distributions?

● We start having N distribution of the same family and order (one for each segment).

● We then define the kernel, i.e. its shape and its distance.

● The pdf can be regarded as the posterior of θ, given the complete data (X,Z).

● Task: find the modes of the posterior, assign each θ to the correct mode.

● Note the correspondence: Kernel function & posterior distribution of θ. 

Fig.2: 6 initial segments that form 4 clusters, assuming normal kernel
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Motivation for the proposed method

● Starting from each point, find its closest maximum in the parameter space.

● Note: It can be it self, i.e. attracted by it self! 

● Consider the alteration as dealing with a higher level in the Bayesian Hierarchy.

Same example in 2-D parameter space
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Kernels on the space of distributions (I)

Step 1: Define an appropriate measure of deviation

● For δ = 0 or 1: Kullback-Leibler divergence

● For δ = 1/2: Twice the Hellinger (squared) distance, the only symmetric deviation

We may also symmetrize the KL divergence by using the summation, 

twice the minimum, twice the harmonic mean, etc.

Note, for all δ:

where G(θ) the Fisher Information Matrix.
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Kernels on the space of distributions (II)

Step 2: Define the shape of the kernel

The is a very rich geometry underlying this family! 

See Information Geometry (Amari, Kass, Rodriguez, Snoossi, a.o.)

● R. Kass, “The Geometry of asymptotic inference” 

● S.-I. Amari, “Differential Geometry of Curved Exponential Families-

Curvatures and Information Loss”

● C. Rodriguez, “A geometric theory of Ignorance”

● H. Snoossi, “Bayesian Information Geometry. Application to Prior 

Selection on Statistical Manifolds”
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Kernels on the space of distributions (III)

Bayesian rationale and derivation of the family of kernels 

Consider the cost function

The family is generated by minimizing the cost function w.r.t. Π(θ) 

using calculus of variations (Rodriguez, Snoossi, a.o.) 

γ
e
 : how confident you are about the location p

0

γ
u
 : how close should be to the uninformative (Jeffreys) prior, 

δ : the type of deviation between the Likelihood functions (observation space)

α : the type of deviation between Π(θ) and the Jeffreys prior (parameter space)

● (δ,α) = (1,1): the entropic prior, Normal-Wishart (for Gaussian likelihoods),

● (δ,α) = (0,1): the usual conjugate prior, Normal-Inverse Wishart,

● If Euclidean geometry in θ, α<1: t-distribution, α=1: Gaussian distribution 

●              goes to zero: the Jeffreys prior

●              goes to infinity: a single probability mass at p
0
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Kernels on the space of distributions (IV)

Step 3: Differentiate the posterior of θ to obtain the mean-shift vector

By differentiating it w.r.t. θ and setting it to zero you obtain the mean-shift vector. 

Analytic solution? Yes, if the likelihood belongs to the exponential family of 

distributions:

The exponential family has many appealing properties....   

ψ(θ): the log-partition function (convex in θ),

θ: the natural parameters,

t(x): the sufficient statistics of x, 

h(x): the dominant measure, constant for Gaussian likelihoods.
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Kernels on the space of distributions (V)

Fundamental properties of the exponential family 

Due to the convexity of ψ(θ) w.r.t. θ we may define the expectation parameters

Second order derivatives

Fisher Information: Lower bound of variance when estimating η based 

on a sample of a single observation (Cramer-Rao bound)

Hence, log-likelihood of θ given X =

For unitary sample size (negative Shannon entropy)

Legendre Transforms:

Stafylakis, et al, Speaker Odyssey '10, Brno



  20

Kernels on the space of distributions (VI)

Q: Why do we need all this theory?

A: To be able to differentiate the kernel and avoid heuristics!

Derivatives of the Kullback Leibler Divergence

We obtain

Note: To obtain a gradient algorithm you need the natural gradient!

The latter approximation holds since:

Definition:

Differentiate:
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The modified mean-shift algorithm

Assuming (δ,α) = (0,1) (i.e. normal-inverse Wishart) the estimated posterior is

Approximation for sufficienlty large sample sizes

Note: The normalizing constant is unnecessary (we are applying mode seeking)

Set the derivative of the posterior w.r.t. θ  to zero to obtain

i.e. the usual weighted average in the η-parametrization.

Assuming (δ,α) = (1,1) i.e. normal-Wishart prior we obtain (by differentiating 

w.r.t. θ)

i.e. the usual weighted average in the θ-parametrization.
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An illustrative example from BN
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● 191 segments merged into 16 clusters

● Blue dots are their initial position

● 6 clusters are singletones
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Avoid fast transitions between speaker

Cauchy vs. Gaussian

● Decrease the divergence between segments that are close enough

● Multiply the kernels by a pdf having heavy tails

● Cauchy and Laplacian work well (prefer the Cauchy)

● Consider the posterior as being a function of time (as seen by each segment)

Note the heavy tails of the cauchy distribution
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Some experiments on speaker clustering

● ESTER Speaker Clustering Dataset – 32 Brodcasts from the French Radio

● ESTER-DEV set (14 BN shows, ~7h total duration)

● ESTER-TEST set (18 BN shows, ~9h total duration)

Benchmark Test

Method used

● Preprocessing (i.e. MFCC extraction)

● Speaker turn detection (oversegmentation)

● No Viterbi alignment

For comparison
● Hierarchical Clustering using ΔBIC (LIUM open-source software)

● Scoring Metric (Hamming distance between ground truth & estimated 

state sequence)
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Experimental Results on ESTER

Note: DER with Hierarchical Clustering using KL-Divergence >30%
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Conclusions

● We proposed an adaptation of the mean-shift algorithm to the parameter space.

● We showed how to deal with a higher level in the Bayesian hierarchy.

● We derived a rich family of kernels, including both shape and distance.

● We showed that for the exponential family, no heuristic is involved. 

● All these approaches lead to point-estimates.

● Use them when a point-estimate is sufficient.

● Avoid them when not dealing with real-time apps.

● Avoid them in large scale problems, or when combining information streams

What we proposed...

When they are relevant...
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More complex models than Gaussians?

● GMMs: They belong to the exponential family only if the complete data 

likelihood is considered. Use UBM. Get the memberships from the last E-step.

● I-vectors: Express the uncertainty in estimating them by a Gaussian, a t-

distribution and it may work.  
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Thanx for your attention!
Apologies for the maths!

For any question, suggestion, collaboration,

themosst@ilsp.athena-innovation.gr
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Q&A
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